JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Processing of dynamic wind pressure loads for temporal simulations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Wind and Structures
  • Volume 21, Issue 4,  2015, pp.425-442
  • Publisher : Techno-Press
  • DOI : 10.12989/was.2015.21.4.425
 Title & Authors
Processing of dynamic wind pressure loads for temporal simulations
Hemon, Pascal;
 Abstract
This paper discusses the processing of the wind loads measured in wind tunnel tests by means of multi-channel pressure scanners, in order to compute the response of 3D structures to atmospheric turbulence in the time domain. Data compression and the resulting computational savings are still a challenge in industrial contexts due to the multiple trial configurations during the construction stages. The advantage and robustness of the bi-orthogonal decomposition (BOD) is demonstrated through an example, a sail glass of the Fondation Louis Vuitton, independently from any tentative physical interpretation of the spatio-temporal decomposition terms. We show however that the energy criterion for the BOD has to be more rigorous than commonly admitted. We find a level of 99.95 % to be necessary in order to recover the extreme values of the loads. Moreover, frequency limitations of wind tunnel experiments are sometimes encountered in passing from the scaled model to the full scale structure. These can be alleviated using a spectral extension of the temporal function terms of the BOD.
 Keywords
pressure loads;wind tunnel;wind gust;temporal simulation;bi-orthogonal decomposition;
 Language
English
 Cited by
 References
1.
Andrianne, T. and Dimitriadis, G. (2013), "Experimental and numerical investigations of the torsional flutter oscillations of a 4:1 rectangular cylinder", J. Fluid. Struct., 41, 64-88. crossref(new window)

2.
Armitt, J. (1968), Eigenvector analysis of pressure fluctuations on the West Burton instrumented cooling tower, Internal Report RD/L/N 114/68, Central Electricity Research Laboratories (UK).

3.
Aubry, N., Guyonnet, R. and Lima, R. (1991), "Spatiotemporal analysis of complex signals: Theory and applications", J. Statistical Phys., 64(3-4), 683-739. crossref(new window)

4.
Benkadda, S., Dudok de Wit, T., Verga, A., Sen, A., ASDEX team and Garbet, X. (1994), "Characterization of Coherent Structures in Tokamak Edge Turbulence", Phys. Rev. Lett., 73(25), 3403-3406. crossref(new window)

5.
Breuer, K.S. and Sirovich, L. (1991), "The use of Karhunen-Loève procedure for the calculation of linear eigenfunctions", J. Comput. Phys., 96(2), 277-296. crossref(new window)

6.
Carassale, L. and Marre Brunenghi, M. (2011), "Statistical analysis of wind-induced pressure fields: A methodological perspective", J. Wind Eng. Ind. Aerod., 99, 700-710. crossref(new window)

7.
Cremona, C. and Foucriat, J.C. (Ed.) (2002), Comportement au vent des ponts, Presses de l'ENPC, Paris, France.

8.
Deng, T., Yu, X. and Xie, Z. (2015), ""Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings", Wind Struct., 21(3), 331-352. crossref(new window)

9.
Dupont, S., Gosselin, F., Py, C., de Langre E., Hemon, P. and Brunet, Y. (2010), "Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis", J. Fluid Mech., 652, 5-44. crossref(new window)

10.
Feeny, B.F. and Kappagantu, R. (1998), "On the physical interpretation of proper orthogonal modes in vibrations", J. Sound Vib., 211(4), 07-616.

11.
Geradin, M. and Rixen, D. (1997), Mechanical vibrations: theory and application to structural dynamics, John Wiley & Son, UK.

12.
Hemon, P. and Santi, F. (2003), "Application of bi-orthogonal decompositions in fluid-structure interactions", J. Fluid. Struct., 17, 1123-1143. crossref(new window)

13.
Hemon, P. and Santi, F. (2007), "Simulation of spatially correlated turbulent velocity field using biorthogonal decomposition", J. Wind Eng. Ind. Aerod., 95(1), 21-29. crossref(new window)

14.
Holmes, P. Lumley, J.L. and Berkooz, G. (1996), Turbulence, Coherent Structures and Symmetry, Cambridge University Press, UK.

15.
Holmes, J.D., Sankaran, R., Kwok, K.C.S. and Syme, M.J. (1997), "Eigenvector mode of fluctuating pressures on low-rise building models", J. Wind Eng. Ind. Aerod., 69-71, 697-707. crossref(new window)

16.
Jeong, S.H., Bienkiewicz, B. and Ham, H.J. (2000), "Proper Orthogonal Decomposition of building wind pressure specified at non-uniformly distributed pressure taps", J. Wind Eng. Ind. Aerod., 87, 1-14. crossref(new window)

17.
Kho, S., Baker, C. and Hoxey, R. (2002), "POD/ARMA reconstruction of the surface pressure field around a low rise structure", J. Wind Eng. Ind. Aerod., 90, 1831-1842. crossref(new window)

18.
Kriegseis, J., Dehler, T., Gnirss, M. and Tropea, C. (2010), "Common-base proper orthogonal decomposition as a means of quantitative data comparison", Meas. Sci. Technol., 21(8), 085403. crossref(new window)

19.
Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H. and Wu, C.G. (2002), "Proper orthogonal decomposition and its applications - Part 1: theory", J. Sound Vib., 252(3), 527-544. crossref(new window)

20.
Pastor, M., Binda, M. and Harþarik, T. (2012), "Modal assurance criterion", Procedia Eng., 48, 543-548. crossref(new window)

21.
Py, C., de Langre, E., Moulia, B. and Hemon, P. (2005), "Measurement of wind-induced motion of crop canopies from digital video images", Agr. Forest Meteorol., 130(3-4), 223-236. crossref(new window)

22.
Ricciardelli, F. (2005), "Proper orthogonal decomposition to understand and simplify wind loads" Proceedings of the EACWE4, The Fourth European & African Conference on Wind Engineering, Prague, July.

23.
Solari, G., Carassale, L. and Tubino, F. (2007), "Proper orthogonal decomposition in wind engineering. Part 1: A state-of-the-art and some prospects", Wind Struct., 10(2), 153-176. crossref(new window)

24.
Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Fluid. Struct., 13(7-8), 1069-1095. crossref(new window)