JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Wind and Structures
  • Volume 22, Issue 3,  2016, pp.291-305
  • Publisher : Techno-Press
  • DOI : 10.12989/was.2016.22.3.291
 Title & Authors
Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory
Abdelhak, Z.; Hadji, L.; Khelifa, Z.; Hassaine Daouadji, T.; Adda Bedia, E.A.;
 Abstract
In this paper, a refined shear deformation plate theory which eliminates the use of a shear correction factor was presented for FG sandwich plates composed of FG face sheets and an isotropic homogeneous core. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present refined shear deformation plate theory, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern buckling behavior of FG sandwiches plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, Boundary condition, and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.
 Keywords
mechanical properties;functionally graded sandwich plate;buckling;shear deformation;volume fraction;
 Language
English
 Cited by
1.
An analytical approach for buckling of functionally graded plates,;;

Advances in materials Research, 2016. vol.5. 3, pp.141-169 crossref(new window)
2.
On thermal stability of plates with functionally graded coefficient of thermal expansion,;;;;

Structural Engineering and Mechanics, 2016. vol.60. 2, pp.313-335 crossref(new window)
3.
Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory,;;

Advances in materials Research, 2016. vol.5. 4, pp.223-244 crossref(new window)
1.
On thermal stability of plates with functionally graded coefficient of thermal expansion, Structural Engineering and Mechanics, 2016, 60, 2, 313  crossref(new windwow)
2.
Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments, Composites Part B: Engineering, 2018, 135, 72  crossref(new windwow)
3.
Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory, Advances in materials Research, 2016, 5, 4, 223  crossref(new windwow)
 References
1.
Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. crossref(new window)

2.
Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 1-14, Article in Press.

3.
Ait Atmane, H., Tounsi, A. and Bernard, F. (2016), "Effect of thickness stretching and porosity on mechanical response of functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 1-14.

4.
Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. crossref(new window)

5.
Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. crossref(new window)

6.
Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Thermal Stresses, 35, 677-694. crossref(new window)

7.
Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. crossref(new window)

8.
Bennoun, M., Houari, M.S.A. and Tounsi, A., (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. crossref(new window)

9.
Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. crossref(new window)

10.
Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. crossref(new window)

11.
El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. crossref(new window)

12.
Etemadi, E., Khatibi, AA. and Takaffoli, M. (2009), "3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact", Compos. Struct, 89, 28-34. crossref(new window)

13.
Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., 13(1), 91-107. crossref(new window)

14.
Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32, 925-942. crossref(new window)

15.
Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect forthermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. crossref(new window)

16.
Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech.-ASCE, 140(2), 374-383. crossref(new window)

17.
Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling and postbuckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation", Arch. Appl. Mech., 82, 891-905. crossref(new window)

18.
Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., 17(1), 21-46. crossref(new window)

19.
Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. crossref(new window)

20.
Shodja, H.M., Haftbaradaran, H. and Asghari, M. (2007), "A thermoelasticity solution of sandwich structures with functionally graded coating", Compos. Sci. Technol., 67, 1073-1080. crossref(new window)

21.
Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct, 99, 76-87. crossref(new window)

22.
Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J., (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", European J. Mech. A/Solids, 45, 211-225. crossref(new window)

23.
Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerospace Sci. Technol., 24, 209-220. crossref(new window)

24.
Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93, 2521-2532. crossref(new window)

25.
Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam : an assessment of a refined nonlocal shear deformation theory", Struct. Eng. Mech., 54( 4), 693-710. crossref(new window)

26.
Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses and Part 2-Buckling and free vibration", Int. J. Solids Struct., 42, 5224-5258. crossref(new window)

27.
Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93, 93-102. crossref(new window)

28.
Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerospace Sci. Technol., 34, 24-34. crossref(new window)