JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Mathematical model to estimate the wind power using three parameter Weibull distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Wind and Structures
  • Volume 22, Issue 4,  2016, pp.393-408
  • Publisher : Techno-Press
  • DOI : 10.12989/was.2016.22.4.393
 Title & Authors
A Mathematical model to estimate the wind power using three parameter Weibull distribution
Seshaiah, C.V.; Sukkiramathi, K.;
 Abstract
Weibull distribution is a suitable distribution to use in modeling the life time data. It has been found to be a exact fit for the empirical distribution of the wind speed measurement samples. In brief this paper consist of important properties and characters of Weibull distribution. Also we discuss the application of Weibull distribution to wind speed measurements and derive an expression for the probability distribution of the power produced by a wind turbine at a fixed location, so that the modeling problem reduces to collecting data to estimate the three parameters of the Weibull distribution using Maximum likelihood Method.
 Keywords
three-parameter Weibull distribution;mean;variance;maximum likelihood method;wind power;
 Language
English
 Cited by
1.
Mathematical modeling of wind power estimation using multiple parameter Weibull distribution, Wind and Structures, 2016, 23, 4, 351  crossref(new windwow)
 References
1.
Archer, C. and Jacobson, M. (2005), "Evaluation of global wind power", Geophys. Res., 110, D12110. crossref(new window)

2.
Chang, T.P. (2011), "Estimation of wind energy potential using different probability density functions", Appl. Energy, 88(5),1848-1856 crossref(new window)

3.
Cook, N.J. (2004), "Confidence limits for extreme wind speeds in mixed climates", J. Wind Eng. Ind. Aerod., 92, 41-51. crossref(new window)

4.
D'Amico, G., Petroni, F. and Prattico, F. (2015), "Wind speed prediction for wind farm applications by extreme value theory and copulas", J. Wind Eng. Ind. Aerod., 145, 229-236. crossref(new window)

5.
Edwards, P. and Hurst, R. (2001), "Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer", Chaos, 11(3), 611-618. crossref(new window)

6.
Gasch, R. and Twelve, J. (2012), Wind Power Plants: Fundamentals, Design, Construction, and Oper-Ation, Springer,

7.
Genc, A., Erisoglu, M., Pekgor, A., Oturanc, G. and Hepbasli, A. (2005), "Estimation of wind power potential using weibull distribution", Energ. Source, 27(9), 809-822. crossref(new window)

8.
Hong, H.P. and Li, S.H. (2014), "Plotting positions and approximating first two moments of order statistics for Gumbel distribution: estimating quantiles of wind speed", Wind Struct., 19(4), 371-387. crossref(new window)

9.
http://geosci.uchicago.edu/-moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf

10.
Jowder, F.A.L. (2009), "Wind power analysis and site matching of wind turbine generators in kingdom of bahrain", Appl. Energy, 86, 538-545. crossref(new window)

11.
Kollu, R., Rayapudi, S.R., Narasimham, S.V.L. and Pakkurthi, K.M. (2012), "Mixture probability distribution functions to model wind speed distributions", Int. J. Energy Environ. Eng., 27(3).

12.
Lun, I.Y.F. and Lam, J.C. (2000), "A study of Weibull parameters using long term wind observations", Renew. Energ., 20(2),145-153. crossref(new window)

13.
Majid, S., Siamak, K.H. and Mehrdad, B. (2015), "Estimation of Weibull parameters for wind energy application in Iran", Wind Struct., 21(2), 203-221. crossref(new window)

14.
Mo, H.M., Hong, H.P. and Fan, F. (2015), "Estimating the extreme wind speed for regions in china using surface wind observations and real analysis data", J. Wind Eng. Ind. Aerod., 143, 19-33. crossref(new window)

15.
Morgan, E.C., Lackner, M., Vogel, R.M. and Baise, L.G. (2011), "Probability distributions for offshore wind speeds", Energ. Convers. Manage., 52, 15-26. crossref(new window)

16.
Nelson, W. (1972), "Theory and application of hazard plotting for censored failure data", Technometrics, 114, 945-966.

17.
Shao, J. (2003), Mathematical Statistics (Second Edition), Springer.

18.
Soukissian, T. (2013), "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution", Appl. Energy, 982-1000.

19.
Weibull, W. (1939), "A statistical theory of strength of materials", Ingenious Vetenskaps Akademien Handlingar, 151.

20.
Zhou, J., Erdem, E., Li, G. and Shi, J. (2010), "Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites", Energy Convers. Manage., 51(7), 1449-1458. crossref(new window)