Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM

- Journal title : Computers and Concrete
- Volume 16, Issue 6, 2015, pp.881-896
- Publisher : Techno-Press
- DOI : 10.12989/cac.2015.16.6.881

Title & Authors

Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM

Haeri, Hadi;

Haeri, Hadi;

Abstract

A simultaneous analytical, experimental and numerical analysis of crack initiation, propagation and breaking process of the Central Straight through Crack Brazilian Disk (CSCBD) specimens under diametrical compression is carried out. Brazilian disc tests are being accomplished to evaluate the fracturing process based on stress intensity factors (SIFs). The effects of crack inclination angle and crack length on the fracturing processes have been investigated. The same experimental specimens have been numerically modeled by a higher order indirect boundary element method (HDDM). These numerical results are compared with the existing experimental results proving the accuracy and validity of the proposed numerical method.

Keywords

concrete-like specimens;CSCBD;SIFs;DDM;higher order elements;

Language

English

Cited by

1.

Suggesting a new testing device for determination of tensile strength of concrete,;;;

2.

The effect of non-persistent joints on sliding direction of rock slopes,;;;

3.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC),;;

4.

A review of experimental and numerical investigations about crack propagation,;;

1.

2.

3.

4.

5.

References

1.

Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81(1), 84-97.

2.

Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk", Int. J. Fract., 18(4), 279-291.

3.

Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641.

4.

Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min., 48(5), 819-826.

5.

Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock part II-experimental studies", Int. J. Rock Mech. Min., 4(4) 407-423.

6.

Chen, J.T. and Hong, H.K. (1999), "Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series", Appl. Mech. Rev., 52(1), 17-33.

7.

Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Tran. Nonferrous Met. Soc. China, 22(1), 185-191.

8.

Crouch, S.L. (1967), "Analysis of stresses and displacements around underground excavations: an application of the displacement discontinuity method", University of Minnesota Geomechanics Report, Minneapolis, Minnesota.

9.

Dai, F. Chen, R, Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min., 47(4), 606-613.

10.

Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78, 2633-2644.

11.

Haeri, H. (2015a), Coupled experimental-numerical fracture mechanics, Lambert Academic Press, Germany.

12.

Haeri, H. (2015b), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623.

13.

Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked rock like shear specimens", Strength. Mater., 47(4), 618-632.

14.

Hoek, E. and Bieniawski, Z.T. (1965), "Brittle rock fracture propagation in rock under compression, South African council for scientific and industrial research pretoria. Int. J. Frac. Mech. 1(3), 137-155.

15.

Ingraffea, A.R. (1985), "Fracture Propagation in Rock", Mech. Geomater. 219-258.

16.

Irwin, G.R. (1957), "Analysis of stress and strains near the end of a crack", J. Appl. Mech., 24, 361.

17.

Janeiro, R.P and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract. 164, 83-102.

18.

Ke, C.C, Chen, C.S and Tu, C.H (2008), "Determination of fracture toughness of anisotropic rocks by boundary element method", Rock Mech. Rock Eng., 41(4), 509-538.

19.

Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999.

20.

Natarajana, S., Mahapatrab, D.R. and Bordas, S.P.A. (2010), "Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework", Int. J. Numer Meth. Eng., 83, 269-294.

21.

Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748.

22.

Ravi-Chandar, K. and Knauss, W.G. (1984), "An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching", Int. J. Fract. 26(2), 141-154.

23.

Scavia, C. (1990), "Fracture mechanics approach to stability analysis of crack slopes", Eng. Fract. Mech., 35(4), 889-910.

24.

Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 100(B4), 5975-5990.

25.

Shou, K.J. and Crouch, S.L. (1995), "A higher order displacement discontinuity method for analysis of crack problems", Int. J. Rock Mech. Min. Sci. Geomech., 32(1), 49-55.

26.

Wallin, K. (2013), "A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests", Eng. Fract. Mech., 99, 18-29.

27.

Wang, Q.Z (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci., 47(6), 1006-1011.

28.

Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469.

29.

Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8.

30.

Whittaker, B.N., Singh, R.N. and Sun, G. (1992), Rock fracture mechanics principles, design and applications, developments in geotechnical engineering, Elsevier, Amsterdam.