JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Computers and Concrete
  • Volume 16, Issue 6,  2015, pp.881-896
  • Publisher : Techno-Press
  • DOI : 10.12989/cac.2015.16.6.881
 Title & Authors
Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM
Haeri, Hadi;
 Abstract
A simultaneous analytical, experimental and numerical analysis of crack initiation, propagation and breaking process of the Central Straight through Crack Brazilian Disk (CSCBD) specimens under diametrical compression is carried out. Brazilian disc tests are being accomplished to evaluate the fracturing process based on stress intensity factors (SIFs). The effects of crack inclination angle and crack length on the fracturing processes have been investigated. The same experimental specimens have been numerically modeled by a higher order indirect boundary element method (HDDM). These numerical results are compared with the existing experimental results proving the accuracy and validity of the proposed numerical method.
 Keywords
concrete-like specimens;CSCBD;SIFs;DDM;higher order elements;
 Language
English
 Cited by
1.
Suggesting a new testing device for determination of tensile strength of concrete,;;;

Structural Engineering and Mechanics, 2016. vol.60. 6, pp.939-952 crossref(new window)
2.
The effect of non-persistent joints on sliding direction of rock slopes,;;;

Computers and Concrete, 2016. vol.17. 6, pp.723-737 crossref(new window)
3.
Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC),;;

Computers and Concrete, 2016. vol.18. 1, pp.39-51 crossref(new window)
4.
A review of experimental and numerical investigations about crack propagation,;;

Computers and Concrete, 2016. vol.18. 2, pp.235-266 crossref(new window)
5.
The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks,;;

Computers and Concrete, 2016. vol.18. 2, pp.201-214 crossref(new window)
1.
The effect of non-persistent joints on sliding direction of rock slopes, Computers and Concrete, 2016, 17, 6, 723  crossref(new windwow)
2.
A review of experimental and numerical investigations about crack propagation, Computers and Concrete, 2016, 18, 2, 235  crossref(new windwow)
3.
Effect of tensile strength of rock on tensile fracture toughness using experimental test and PFC2D simulation, Journal of Mining Science, 2016, 52, 4, 647  crossref(new windwow)
4.
Suggesting a new testing device for determination of tensile strength of concrete, Structural Engineering and Mechanics, 2016, 60, 6, 939  crossref(new windwow)
5.
Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC), Computers and Concrete, 2016, 18, 1, 39  crossref(new windwow)
6.
The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks, Computers and Concrete, 2016, 18, 2, 201  crossref(new windwow)
 References
1.
Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81(1), 84-97. crossref(new window)

2.
Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk", Int. J. Fract., 18(4), 279-291.

3.
Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641. crossref(new window)

4.
Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min., 48(5), 819-826. crossref(new window)

5.
Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock part II-experimental studies", Int. J. Rock Mech. Min., 4(4) 407-423. crossref(new window)

6.
Chen, J.T. and Hong, H.K. (1999), "Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series", Appl. Mech. Rev., 52(1), 17-33. crossref(new window)

7.
Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Tran. Nonferrous Met. Soc. China, 22(1), 185-191. crossref(new window)

8.
Crouch, S.L. (1967), "Analysis of stresses and displacements around underground excavations: an application of the displacement discontinuity method", University of Minnesota Geomechanics Report, Minneapolis, Minnesota.

9.
Dai, F. Chen, R, Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min., 47(4), 606-613. crossref(new window)

10.
Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78, 2633-2644. crossref(new window)

11.
Haeri, H. (2015a), Coupled experimental-numerical fracture mechanics, Lambert Academic Press, Germany.

12.
Haeri, H. (2015b), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. crossref(new window)

13.
Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked rock like shear specimens", Strength. Mater., 47(4), 618-632. crossref(new window)

14.
Hoek, E. and Bieniawski, Z.T. (1965), "Brittle rock fracture propagation in rock under compression, South African council for scientific and industrial research pretoria. Int. J. Frac. Mech. 1(3), 137-155.

15.
Ingraffea, A.R. (1985), "Fracture Propagation in Rock", Mech. Geomater. 219-258.

16.
Irwin, G.R. (1957), "Analysis of stress and strains near the end of a crack", J. Appl. Mech., 24, 361.

17.
Janeiro, R.P and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract. 164, 83-102. crossref(new window)

18.
Ke, C.C, Chen, C.S and Tu, C.H (2008), "Determination of fracture toughness of anisotropic rocks by boundary element method", Rock Mech. Rock Eng., 41(4), 509-538. crossref(new window)

19.
Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. crossref(new window)

20.
Natarajana, S., Mahapatrab, D.R. and Bordas, S.P.A. (2010), "Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework", Int. J. Numer Meth. Eng., 83, 269-294.

21.
Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. crossref(new window)

22.
Ravi-Chandar, K. and Knauss, W.G. (1984), "An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching", Int. J. Fract. 26(2), 141-154. crossref(new window)

23.
Scavia, C. (1990), "Fracture mechanics approach to stability analysis of crack slopes", Eng. Fract. Mech., 35(4), 889-910. crossref(new window)

24.
Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 100(B4), 5975-5990. crossref(new window)

25.
Shou, K.J. and Crouch, S.L. (1995), "A higher order displacement discontinuity method for analysis of crack problems", Int. J. Rock Mech. Min. Sci. Geomech., 32(1), 49-55. crossref(new window)

26.
Wallin, K. (2013), "A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests", Eng. Fract. Mech., 99, 18-29. crossref(new window)

27.
Wang, Q.Z (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci., 47(6), 1006-1011. crossref(new window)

28.
Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. crossref(new window)

29.
Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. crossref(new window)

30.
Whittaker, B.N., Singh, R.N. and Sun, G. (1992), Rock fracture mechanics principles, design and applications, developments in geotechnical engineering, Elsevier, Amsterdam.

31.
Yang, Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. crossref(new window)

32.
Yang, S.Q (2011), "Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation breakage", Eng. Fract. Mech., 78(17), 3059-3081. crossref(new window)