JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Computers and Concrete
  • Volume 16, Issue 6,  2015, pp.933-961
  • Publisher : Techno-Press
  • DOI : 10.12989/cac.2015.16.6.933
 Title & Authors
Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact
Das, Raj; Cleary, Paul W.;
 Abstract
Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.
 Keywords
mesh-free method;smoothed particle hydrodynamics;concrete;fracture;impact;
 Language
English
 Cited by
 References
1.
Aliabadi, M.H. and Rooke, D.P. (1991), Numerical Fracture Mechanics, Computational Mechanics Publications and Kluwer Academic Publishers.

2.
Bonet, J. and Kulasegaram, S. (2001), "Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods", Int. J. Numer. Meth. Eng., 52(11), 1203-1220. crossref(new window)

3.
Cedric, T., Janssen, L.P.B.M. and Pep, E. (2005), "Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations", Physical Review E (Statistical, nonlinear, and soft matter Physics), 72(1), 016713. crossref(new window)

4.
Chen, J.K., Beraun, J.E. and Jih, C.J. (1999), "Improvement for tensile instability in smoothed particle hydrodynamics", Comput. Mech., 23(4), 279-287. crossref(new window)

5.
Cleary, P.W. (1998), "Modelling confined multi-material heat and mass flows using SPH", Appl. Math. Model., 22(12), 981-993. crossref(new window)

6.
Cleary, P.W. (2010a), "Elastoplastic deformation during projectile-wall collision", Appl. Math. Model., 34(2), 266-283. crossref(new window)

7.
Cleary, P.W. (2010b), "Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting", Appl. Math. Model., 34(11), 3189-3201. crossref(new window)

8.
Cleary, P.W. and Das, R. (2010a), "The potential for SPH modelling of solid deformation and fracture", IUTAM symposium on theoretical, Computational and modelling aspects of inelastic media, B.D. Reddy, Springer Netherlands, Volume 11, pp. 287-296.

9.
Cleary, P.W. and Monaghan, J.J. (1999), "Conduction modelling using smoothed particle hydrodynamics", J. Comput. Phys., 148(1), 227-264. crossref(new window)

10.
Cleary, P., Ha, J., Alguine, V. and Nguyen, T. (2002), "Flow modelling in casting processes", Appl. Math. Model., 26(2), 171-190. crossref(new window)

11.
Cleary, P.W., Ha, J., Prakash, M. and Nguyen, T. (2006a), "3D SPH flow predictions and validation for high pressure die casting of automotive components", Appl. Math. Model., 30(11), 1406-1427. crossref(new window)

12.
Cleary, P.W., Prakash, M. and Ha, J. (2006b), "Novel applications of smoothed particle hydrodynamics (SPH) in metal forming", J. Mater. Process. Tech., 177(1-3), 41-48. crossref(new window)

13.
Cleary, P.W., Prakash, M., Ha, J., Stokes, N. and Scott, C. (2007), "Smooth particle hydrodynamics: status and future potential", Prog. Comput. Fluid Dy., 7(2-4), 70-90. crossref(new window)

14.
Cleary, P.W., Prakash, M., Das, R. and Ha, J. (2012), "Modelling of metal forging using SPH", Appl. Math. Model., 36(8), 3836-3855. crossref(new window)

15.
Das, R. and Cleary, P.W. (2006), "Uniaxial compression test and stress wave propagation modelling using SPH", Proceedings of the Fifth International Conference on Computational Fluid Dynamics in the Process Industries. Melbourne, Australia,

16.
Das, R. and Cleary, P.W. (2010), "Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics", Theor. Appl. Fract. Mec., 53(1), 47-60. crossref(new window)

17.
Das, R. and Cleary, P.W. (2013), "A mesh-free approach for fracture modelling of gravity dams under earthquake", Int. J. Fracture, 179(1-2), 9-33. crossref(new window)

18.
Das, R. and Cleary, P.W. (2015a), "Evaluation of accuracy and stability of the classical SPH method under uniaxial compression", J. Sci. Comput., 64(3), 858-897. crossref(new window)

19.
Das, R. and Cleary, P.W. (2015b), "Novel application of the mesh-free SPH method for modelling thermo-mechanical responses in arc welding", Int. J. Mech. Mater. D., 11(3), 337-355. crossref(new window)

20.
Davison, L. and Stevens, A.L. (1973), "Thermomechanical constitution of spalling elastic bodies", J. Appl. Phys., 44(2), 668-674. crossref(new window)

21.
Dyka, C.T. and Ingel, R.P. (1995), "An approach for tension instability in smoothed particle hydrodynamics", Comput. Struct., 57(4), 573-580. crossref(new window)

22.
Dyka, C.T., Randles, P.W. and Ingel, R.P. (1997), "Stress points for tension instability in SPH", Int. J. Numer. Meth. Eng., 40(13), 2325-2341. crossref(new window)

23.
Eftekhari, M. and Mohammadi, S. (2015), "Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading", Int. J. Impact Eng. [In Press]

24.
Fagan, T., Das, R., Lemiale, V. and Estrin, Y. (2012), "Modelling of equal channel angular pressing using a mesh-free method", J. Mater. Sci., 47(11), 4514-4519. crossref(new window)

25.
Fahrenthold, E.P. and Yew, C.H. (1995), "Hydrocode simulation of hypervelocity impact fragmentation", Int. J. Impact Eng., 17(1-3), 303-310. crossref(new window)

26.
Fang, Z. and Harrison, J.P. (2001), "Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model", Transactions of the Institution of Mining and Metallurgy, Section A: Mining Industry, 111(1), 59-72.

27.
Fang, J., Owens, R.G., Tacher, L. and Parriaux, A. (2006), "A numerical study of the SPH method for simulating transient viscoelastic free surface flows", J. Non-newton Fluid, 139(1-2), 68-84. crossref(new window)

28.
Fernandez-Mendez, S., Bonet, J. and Huerta, A. (2005), "Continuous blending of SPH with finite elements", Comput. Struct., 83(17-18), 1448-1458. crossref(new window)

29.
Fujiwara, A. (1989), "Experiments and scaling laws for catastrophic collisions", Asteroids Ii, 240-265.

30.
Fujiwara, G. (1994), "Review of fracture mechanics for aircraft structures", Zairyo/J. Soc. Mater. Sci., Japan 43(493), 1188-1194. crossref(new window)

31.
Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics - Theory and application to non-spherical stars", MNRAS 181(3), 375-389. crossref(new window)

32.
Grady, D.E. and Kipp, M.E. (1980), "Continuum modelling of explosive fracture in oil shale", Int. J. Rock Mech. Min., 17(3), 147-157. crossref(new window)

33.
Grady, D.E., Kipp, M.E. and Smith, C.S. (1980), "Explosive fracture studies on oil shale", Soc. Petro. Eng. J., 20(5), 349-356. crossref(new window)

34.
Gray, J.P. and Monaghan, J.J. (2004), "Numerical modelling of stress fields and fracture around magma chambers", J. Volcanol. Geoth. Res., 135(3), 259-283. crossref(new window)

35.
Gray, J.P., Monaghan, J.J. and Swift, R.P. (2001), "SPH elastic dynamics", Comput. Method. Appl. M., 190(49-50), 6641-6662. crossref(new window)

36.
Harrison, S. and Cleary, P. (2014), "Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH)", Eur. Food Res. Technol., 238(2), 185-215. crossref(new window)

37.
Hu, S., Zhang, X. and Xu, S. (2015), "Effects of loading rates on concrete double-K fracture parameters", Eng. Fract. Mech., 149, 58-73. crossref(new window)

38.
Huang, Y., Yang, Z., Ren, W., Liu, G. and Zhang, C. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solids. Struct., 67-68, 340-352. crossref(new window)

39.
Imaeda, Y. and Inutsuka, S.i. (2002), "Shear flows in smoothed particle hydrodynamics", Astrophys. J., 569(1), 501-518. crossref(new window)

40.
Ju, J., Jiang, X. and Fu, X. (2007), "Fracture analysis for damaged aircraft fuselage subjected to blast", Key Eng. Mater., 348-349, 705-708. crossref(new window)

41.
Karekal, S., Das, R., Mosse, L. and Cleary, P.W. (2011), "Application of a mesh-free continuum method for simulation of rock caving processes", Int. J. Rock Mech. Min., 48(5), 703-711. crossref(new window)

42.
Kleine, T., La Pointe, P. and Forsyth, B. (1997), "Realizing the potential of accurate and realistic fracture modeling in mining", Int. J. Rock Mech. Min., 34(3-4), 661. crossref(new window)

43.
Kulasegaram, S., Bonet, J., Lewis, R.W. and Profit, M. (2003), "High pressure die casting simulation using a Lagrangian particle method", Commun. Numer. Meth. En., 19(9), 679-687. crossref(new window)

44.
Kumar, S. and Barai, S.V. (2010), "Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. M., 33(10), 645-660. crossref(new window)

45.
Lemiale, V., King, P.C., Rudman, M., Prakash, M., Cleary, P.W., Jahedi, M.Z. and Gulizia, S. (2014), "Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics", Surf. Coat. Tech., 254, 121-130. crossref(new window)

46.
Libersky, L.D. and Petschek, A.G. (1990), "Smooth particle hydrodynamics with strength of materials", Advances in the Free-Lagrange Method, Springer, Berlin, Germany.

47.
Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Int. J. Numer. Meth. Eng., 38(10), 1655-1679. crossref(new window)

48.
Liu, Z.S., Swaddiwudhipong, S. and Koh, C.G. (2004), "High velocity impact dynamic response of structures using SPH method", Int. J. Comput. Eng. Sci., 5(2), 315-326. crossref(new window)

49.
Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astron. J., 82, 1013-1024. crossref(new window)

50.
Melosh, H.J. (1985), "Ejection of rock fragments from planetary bodies", Geology, 13(2), 144-148. crossref(new window)

51.
Melosh, H.J. and Collins, G.S. (2005), "Meteor crater formed by low-velocity impact", Nature, 434(7030), 157. crossref(new window)

52.
Melosh, H.J., Ryan, E.V. and Asphaug, E. (1992), "Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts", J. Geophys. Res., 97(E9), 14735-14759. crossref(new window)

53.
Mitchell, R.J. (1993), "Physical modelling of fracture and flow in mine backfills", Proceedings of the International Congress on Mine Design, Kingston, ON, Canada, August.

54.
Mok, H., Chiu, W.K., Peng, D., Sowden, M. and Jones, R. (2007), "Rail wheel removal and its implication on track life: a fracture mechanics approach", Theor. Appl. Fract. Mec., 48(1), 21-31. crossref(new window)

55.
Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Ann. Rev. Astron. Astrophys., 30, 543-574. crossref(new window)

56.
Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110(2), 399-406. crossref(new window)

57.
Monaghan, J.J. (2000), "SPH without a tensile instability", J. Comput. Phys., 159(2), 290-311. crossref(new window)

58.
Monaghan, J.J. (2005), "Smoothed particle hydrodynamics", Rep. Prog. Phys., 68, 1703-1759. crossref(new window)

59.
Morrison, R.D. and Cleary, P.W. (2004), "Using DEM to model ore breakage within a pilot scale sag mill", Miner. Eng., 17(11-12), 1117-1124. crossref(new window)

60.
Napier, J.A.L. (1990), "Modelling of fracturing near deep level gold mine excavations using a displacement discontinuity approach", International Conference on Mechanics of Jointed and Faulted Rock, Vienna, Austria

61.
Pierazzo, E. and Melosh, H.J. (2000), "Understanding oblique impacts from experiments, observations, and modeling", Ann. Rev. Inc., 28, 141-167, Palo Alto, CA, USA.

62.
Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock. Mech. Min., 41(8), 1329-1364. crossref(new window)

63.
Prakash, M. and Cleary, P. (2015), "Modelling highly deformable metal extrusion using SPH", Comput. Particle Mech., 2(1), 19-38. crossref(new window)

64.
Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Method. Eng., 48(10), 1445-1462. crossref(new window)

65.
Rezaie, F. and Farnam, S.M. (2015), "Fracture mechanics analysis of pre-stressed concrete sleepers via investigating crack initiation length", Eng. Fail. Anal., 58(Part 1), 267-280. crossref(new window)

66.
Selman, E., Ghiami, A. and Alver, N. (2015), "Study of fracture evolution in FRP-strengthened reinforced concrete beam under cyclic load by acoustic emission technique: An integrated mechanical-acoustic energy approach", Constr. Build. Mater., 95, 832-841. crossref(new window)

67.
Sharir, Y., Stone, D.H. and Pellini, W.S. (1982), "Fracture analysis of cast steel components in rail vehicles", Gaitherburg, MD, USA, NBS, Washington, DC, USA.

68.
Shockey, D.A., Curran, D.R., Seaman, L., Rosenberg, J.T. and Petersen, C.F. (1974), "Fragmentation of rock under dynamic loads", Int. J. Rock Mech. Min., 11(8), 303-317. crossref(new window)

69.
Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray ${\mu}CT$ images of internal structure", Eng. Fract. Mech., 147, 13-35. crossref(new window)

70.
Swegle, J.W., Hicks, D.L. and Attaway, S.W. (1995), "Smoothed particle hydrodynamics stability analysis", J. Comput. Phys., 116(1), 123-134. crossref(new window)

71.
Tait, R.B. and Emslie, C. (2005), "The use of fracture mechanics in failure analysis in the offshore diamond mining industry", Eng. Fail. Anal., 12(6 SPEC ISS), 893-905. crossref(new window)

72.
Takabatake, H., Nonaka, T. and Tanaki, T. (2005), "Numerical study of fracture propagating through column and brace of ashiyahama residential building in Kobe Earthquake", Struct. Des. Tall Spec., 14(2), 91-105. crossref(new window)

73.
Thorne, B.J., Hommert, P.J. and Brown, B. (1990), "Experimental and computational investigation of the fundamental mechanisms of cratering", 3rd International Symposium on Rock Fragmentation by Blasting, Brisbane, Australia.

74.
Uetani, K. and Tagawa, H. (1999), "Earthquake response analysis of steel building frames considering brittle fractures at member-ends", Structures Congress - Proceedings, 406-409.

75.
Vidal, Y., Bonet, J. and Huerta, A. (2007), "Stabilized updated lagrangian corrected SPH for explicit dynamic problems", Int. J. Numer. Meth. Eng., 69(13), 2687-2710. crossref(new window)

76.
Vignjevic, R., Campbell, J. and Libersky, L. (2000), "A treatment of zero-energy modes in the smoothed particle hydrodynamics method", Comput. Method. Appl. M., 184(1), 67-85. crossref(new window)

77.
Wang, L., Brust, F.W. and Atluri, S.N. (1997), "Elastic-plastic finite element alternating method (EPFEAM) and the prediction of fracture under WFD conditions in aircraft structures. Part II: Fracture and the T*-integral parameter", Comput. Mech., 19(5), 370-379. crossref(new window)

78.
Wen, Z., Shiyue, W. and Wancheng, Z. (2005), "The failure and falling of the rock mass in the underground mining", Key Eng. Mater., 297-300, 2586-2591. crossref(new window)

79.
Wilkins, J.L. (1964), "Calculation of elastic-plastic flow", Methods of Computational Physics, New York, Academic Press, 8, 211-263.

80.
Wingate, C.A. and Fisher, H.N. (1993), "Strength modeling in SPHC", Los Alamos National Laboratory.

81.
Yu, K., Yu, J., Lu, Z. and Chen, Q. (2015), "Determination of the softening curve and fracture toughness of high-strength concrete exposed to high temperature", Eng. Fract. Mech., 149, 156-169. crossref(new window)