JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of fiber geometry on the electromagnetic shielding performance of mortar
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Computers and Concrete
  • Volume 17, Issue 2,  2016, pp.281-294
  • Publisher : Techno-Press
  • DOI : 10.12989/cac.2016.17.2.281
 Title & Authors
Effect of fiber geometry on the electromagnetic shielding performance of mortar
Kim, Young Jun; Yemam, Dinberu M.; Kim, Baek-Joong; Yi, Chongku;
 Abstract
The increased awareness of electromagnetic wave hazards has prompted studies on electromagnetic shielding using conductive materials in the construction industry. Previous studies have explored the effects of the types of conductive materials and their mix proportions on the electromagnetic shielding performance; however, there has been insufficient research on the effect of the geometry of the conductive materials on the electromagnetic shielding performance. Therefore, in this study, the dependence of the electromagnetic shielding performance on the cross-sectional geometry, diameter and length of fibers was investigated. The results showed that the electromagnetic shielding performance improved when the fiber length increased or the diameter decreased, but the effect of the cross-sectional geometry of the fibers was smaller than the effect of the fiber spacing factor.
 Keywords
electromagnetic wave;shielding effectiveness;metal fiber;geometry;spacing factor;
 Language
English
 Cited by
 References
1.
Albano, C., Camacho, N., Reyes, J., Feliu, J.L. and Hernandez, M. (2005), "Influence of scrap rubber addition to Portland I concrete composites: destructive and non-destructive testing", Comp. Struct., 71(3), 439-446. crossref(new window)

2.
ASTM International (2010), Standard test method for measuring the electromagnetic shielding effectiveness of planar materials, Americal Society of Testing Materials, America.

3.
Bantsis, G., Mavridou, S., Sikalidis, C., Betsiou, M., Oikonomou, N. and Yioultsis, T. (2012), "Comparison of low cost shielding-absorbing cement paste building materials in X-band frequency range using a variety of wastes", Ceram. Int., 38(5), 3683-3692. crossref(new window)

4.
Baoyi, L., Yuping, D. and Shunhua, L. (2012), "The electromagnetic characteristics of fly ash and absorbing properties of cement-based composites using fly ash as cement replacement", Constr. Build. Mater., 27(1), 184-188. crossref(new window)

5.
Chiou, J.M., Zheng, Q. and Chung, D.D.L. (1989), "Electromagnetic interference shielding by carbon fibre reinforced cement", Composites, 20(4), 379-381. crossref(new window)

6.
Choi, H.J. and Choi, K.K. (2012), "A prediction model of shrinkage cracking of steel fiber reinforced concrete", J. Architec. Inst. Korea Struct. Constr., 28(6), 59-66.

7.
Draper, G. and Vincent, T. (2005), "Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study", 330(7503), 1290. crossref(new window)

8.
Eisa, A. (2014), "Properties of concrete incorporating recycled post-consumer environmental wastes", Int. J. Concrete Struct. Mater., 8(3), 251-258. crossref(new window)

9.
Genuis, S.J. (2008), "Fielding a current idea: exploring the public health impact of electromagnetic radiation", Public Health, 122(2), 113-124. crossref(new window)

10.
Ghernouti, Y. and Rabehi, B. (2012), "Strength and durability of mortar made with plastics bag waste (MPBW)", Int. J. Concrete Struct. Mater., 6(3), 145-153. crossref(new window)

11.
Greenland, S. and Sheppard, A.R. (2000), "A pooled analysis of magnetic fields, wire codes, and childhood leukemia", Epidemiology, 11(6), 624-634. crossref(new window)

12.
Guan, H., Liu, S., Duan, Y. and Cheng, J. (2006), "Cement based electromagnetic shielding and absorbing building materials", Cement Concrete Comp., 28(5), 468-474. crossref(new window)

13.
James, P.R. and James, A.M. (1964), "Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement", J. Proc., 61(6), 657-672.

14.
Kabuto, M. and Nitta, H. (2006), "Childhood leukemia and magnetic fields in Japan: A case-control study of childhood leukemia and residential power-frequency magnetic fields in Japan", Int. J. Cancer, 119(3), 643-650. crossref(new window)

15.
Kabuto, M., Nitta, H., Yamamoto, S., Yamaguchi, N., Akiba, S., Honda, Y. and Nakamura, Y. (2006), "Childhood leukemia and magnetic fields in Japan: A case‐control study of childhood leukemia and residential power‐frequency magnetic fields in Japan", Int. J. Cancer, 119(3), 643-650. crossref(new window)

16.
Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. crossref(new window)

17.
Kim, Y.J. and Yi, C. (2015), "The UHF wave shielding effectiveness of mortar with conductive inclusions", J. Architec. Inst. Korea Struct. Constr., 31(4), 103-110. crossref(new window)

18.
KSA (2014), KS C 0304 Test method for measuring the electromagnetic shielding effectiveness of planar Korean standards association, Korea.

19.
Lee, S.H. and Shim, J.W. (2003), "Properties and shielding efficiency of electromagnetic wave absorbing inorganic paint using carbon", J. Architec. Inst. Korea Struct. Constr., 19(1), 69-76.

20.
Li, D.K. and Odouli, R. (2002), "A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage", Epidemiology, 13(1), 9-20. crossref(new window)

21.
Lim, H.S. and Lee, H.S. (2011), "Experimental study on the development of X-Ray shielding concrete utilizing electronic arc furnace oxidizing slag", J. Architec. Inst. Korea Struct. Constr., 27(7), 125-132.

22.
Michael, P.A. (1997), Regression analysis with standardized variables, Springer, US.

23.
Micheli, D. and Pastore, R. (2014), "Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band", Mater. Sci. Eng. B, 188, 119-129. crossref(new window)

24.
Min, G.C. (2009), EMC engineering, Jinhan MnB, Seoul

25.
Shyr, T.W. and Shie, J.W. (2012), "Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles", J. Magn. Magn. Mater., 324(23), 4127-4132. crossref(new window)

26.
Suchea, M., Tudose, I.V., Tzagkarakis, G., Kenanakis, G., Katharakis, M., Drakakis, E. and Koudoumas, E. (2015), "Nanostructured composite layers for electromagnetic shielding in the GHz frequency range", Appl. Surf. Sci., 352, 151-154. crossref(new window)

27.
Wen, S. and Chung, D.D.L. (2004), "Electromagnetic interference shielding reaching 70 dB in steel fiber cement", Cement Concrete Res., 34(2), 329-332. crossref(new window)

28.
White, D.R.J. and Mardiguian, M. (1988), Electromagnetic shielding, Interference Control Technologies.