Advanced SearchSearch Tips
A review of experimental and numerical investigations about crack propagation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Computers and Concrete
  • Volume 18, Issue 2,  2016, pp.235-266
  • Publisher : Techno-Press
  • DOI : 10.12989/cac.2016.18.2.235
 Title & Authors
A review of experimental and numerical investigations about crack propagation
Sarfarazi, Vahab; Haeri, Hadi;
A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.
non-persistent joint;experimental test;numerical simulation;
 Cited by
Aliabadi, M.H. and Brebbia, C.A. (1993), "Advances in boundary element methods for fracture mechanics", Amsterdam: Computational Mechanics Publications, Elsevier.

Altiero, N.Y. and Gioda, G. (1982), "An integral equation approach to fracture propagation in rock", Riv. Ital. Geotecnica, 387-404.

Alzo'ubi (2001), "A fracture mechanisms of open offset rock joints under uniaxial loading", M. Sc. thesis, Jordan University of Science and Technology, Irbid, Jordan.

Ashby, M.F. and Hallam, S.D. (1986), "The failure of brittle solids containing small cracks under compressive stress states", Acta Metall., 34(3), 497-510. crossref(new window)

Bahaaddini, M., Sharrock, G. and Hebblewhie, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. crossref(new window)

Batzle, M.L., Simmons, G. and Siegfried, R.W. (1980), "Microcrack closure in rocks under stress: direct observation", J. Geophys. Res., 85, 7072-90. crossref(new window)

Bi, J., Zhou, X.P. and Qian, Q.H. (2015), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., (Published online).

Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock Part II-experimental studies", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, 407-23. crossref(new window)

Blandford, A.R., Ingraffea, A.R. and Ligget, J.A. (1981), "Two dimensional stress intensity factor computations using the boundary element method", Int. J. Numer. Method. Eng., 17(3), 387-401. crossref(new window)

Bobet, A. (1997), "Fracture coalescence in rock materials: experimental observations and numerical predictions", Sc.D. Thesis, MIT, Cambridge, USA.

Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. crossref(new window)

Bobet, A. and Einstein, H.H. (1998), "Numerical modeling of fracture coalescence in rock materials", Int. J. Fract., 92(3), 221-52. crossref(new window)

Bobet, A. and Einstein, H.H. (1999), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-889.

Carpinteri, A. and Valente, S. (1988), "Size-scale transition from ductile to brittle failure: a dimensional analysis approach", Proceedings of the CNRS-NSF, Workshop on strain localization and size effect due to cracking and damage, Cachan, 447-90.

Celestino, S.P., Piltner, R., Monteiro, P.J.M. and Ostertag, C.P. (2001), "Fracture mechanics of marble using a splitting tension test", J. Mater. Civ. Eng., 13(6), 407-411. crossref(new window)

Chen, G., Kemeny, J. and Harpalani, S. (1992), "Fracture propagation and coalescence in marble plates with pre-cut notches under compression", Symp. on Fractured and Jointed Rock Mass, Lake Tahoe, CA, 443-448.

Chen, G., Zhang, Y., Huang, R., Guo, F. and Zhang, G. (2015), "Failure mechanism of rock bridge based on acoustic emission technique", J. Sensors, 15, 1-10. crossref(new window)

Cheon, D., Jung, Y., Park, E., Song W. and Jang, H. (2011), "Evaluation of damage level for rock slopes using acoustic emission technique with waveguides", Eng. Geol., 121 (1-2), 75-88. crossref(new window)

Cherepanov, G.P. (1966), "Propagation of cracks in compressed bodies", J. Appl. Math. Mech., (English transl of Prikl Mate Mekh), 30(1), 96-109.

Committee on Fracture Characterization and Fluid Flow et al. (1996), "Rock fractures and fluid flow", Contemporary understanding and applications, Washington, DC: National Academic Press.

De Bremaecker, J.C. and Ferris, M.C. (2004), "Numerical models of shear fracture propagation", Eng. Fract. Mech., 71(15), 2161-2178. crossref(new window)

Deng, Q. and Zhang, P. (1984), "Research on the geometry of shear fracture zones" , J. Geophys. Res., 89(B7), 5669-5710. crossref(new window)

Dey, T.N. and Wang, C.Y. (1981), "Some mechanisms of microcrack growth and interaction in compressive rock failure", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(3), 199-209. crossref(new window)

Einstein, H.H, Veneziano, D., Baecher, G.B. and O'Reillly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(5), 227-36. crossref(new window)

Erdogan, F., Sih, G.C. (1963), "On the crack extension path in plates under plane loading and transverse shear", ASMEJ Basic Eng., 85(4), 516-27.

Fredrich , J.T., Evans, B. and Wong, T.F. (1990), "Effect of grain size on brittle and semi brittle strength: Implications for micromechanical modelling of failure in compression", J. Geophys. Res., 95(B7), 10907-10920. crossref(new window)

Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behavior of intermittent rock joints", Int. J. Rock Mech. Min. Sci., 40(5), 687-700. crossref(new window)

Germanovich, L.N., Carter, B.J., Dyskin, A.V., Ingraffea, A.R. and Lee, K.K. (1996), "Mechanics of 3-D crack growth under compressive loads. Rock mechanics tools and techniques", Proceedings of the Second North American Rock Mechanics Symposium: NARMS '96. Rotterdam: Balkema, 1151-1160.

Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", Proceedings of the 11th congress of the international society of rock mechanics, Lisbon, Portugal.

Ghazvinian, A., Sarfarazi, V. and Moosavi, S.A. (2010), "Analysis of crack coalescence in rock bridges using neural network", Proceedings of the European Rock Mechanics Symposium, 255-258.

Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M.A. (2011), "Study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng. J., 45(5), 677-693.

Griffith, A.A. (1924), "The theory of rupture", Proc.1st Int. Congr. Appl. Mech. Delft, 55-63.

Griffth, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. Trans. R. Soc. London Ser. A, 221, 163-198. crossref(new window)

Haeri, H. (2015c), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. crossref(new window)

Haeri, H. (2015d), "Experimental crack analysis of rock-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. crossref(new window)

Haeri, H. (2015e), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. crossref(new window)

Haeri, H. (2015f), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. crossref(new window)

Haeri, H. and Marji, M.F. (2016b), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 1-10. crossref(new window)

Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-12. crossref(new window)

Haeri, H., Marji, M.F. and Shahriar, K. (2015b), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927. crossref(new window)

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2014a), "On the strength and crack propagation process of the pre-cracked rock-like specimens under uniaxial compression", Strength Mater., 46(1), 171-185.

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2014b), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Latin American J. Solid. Struct., 11(8), 1400-1416. crossref(new window)

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2014c), "A coupled numerical-experimental study of the breakage process of brittle substances", Arab. J. Geosci., 8(2), 809-825

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2014d), "On the cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Central S. Univ., 21(6), 2404-2414. crossref(new window)

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2014e), "Investigating the fracturing process of rock-like Brazilian discs containing three parallel cracks under compressive line loading", Strength Mater., 46(3), 133-148

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2014f), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67, 20-28.

Haeri, H., Marji, M.F., Shahriar, K. and Moarefvand, P. (2015a), "On the HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8(5), 2841-2852. crossref(new window)

Hall, S.A., De Sanctis, F. and Viggiani, G. (2006), "Monitoring fracture propagation in a soft rock (Neapolitan Tuff) using acoustic emissions and digital images", Pure Appl. Geophys., 163(10), 2171-2204. crossref(new window)

Hallbauer, D.K., Wagner, H.N.G.W. and Cook, N.G.W. (1973), "Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(6), 713-726. crossref(new window)

Hoek, E. and Bieniawski, Z.T. (1984), "Brittle fracture propagation in rock under compression", Int. J. Fract., 26(4), 276-294. crossref(new window)

Horii, H. and Nemat-Nasser, S. (1985), "Compression-induced microcrack growth in brittle solids: axial splitting and shear failure", J. Geophys. Res., 90(B4), 3. crossref(new window)

Horii, S. and Nemat-Nasser, S. (1986), "Brittle failure in compression: splitting, faulting and brittle-ductile transition", Phil. Trans. R. Soc. Lond., 319(1549), 337-74. crossref(new window)

Hu, B., Zhang, N. and Liu, S. (2009), "Contrastive model test for joint influence on strength and deformation of rock masses", J. Central S. Univ. (Sci. Tech.), 40, 1133-1138.

Hussain, M.A. and Pu, E.L. (1974), "Underwood JH, Strain energy release rate for a crack under combined model I and mode II", 560, 2-28.

Ibraheem, O.F., Bakar, B.H.A. and Johari, I. (2015), "Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: an experimental study", Struct. Eng. Mech., 54(1), 1-17. crossref(new window)

Ingraffea, A.R. and Heuze, F.E. (1980), "Finite element models for rock fracture mechanics", Int. J. Numer. Anal. Meth. Geomech., 4(1), 25-43. crossref(new window)

Irwin, G.R. (1957), "Analysis of stresses and strains near the ends of a crack traversing a plate", J. Appl. Mech., 24, 361-364.

Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotech., 21(2), 97-134. crossref(new window)

Jamil, S.M. (1999), "Strength of non-persistent rock joints", Ph. D. thesis, University of Illinois at Urbana-Champaign, IL, U.S.A.

Jansen, D.P., Carlson, S.R., Young, R.P., and Hutchins, D.A. (1993), "Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite", J. Geophys. Res. Solid Earth, 98(B12), 22231-22243. crossref(new window)

Jennings, J.E. (1970), "A mathematical theory for the calculation of the stability of slopes in open cast mines", Planning Open Pit Mines, Proceedings of the Symposium on the Theoretical Background to the Plannings of Open Pit Mines with Special Reference to Slope Stability, Johannesburg, 87-102.

Jiefan, H., Ganglin, C., Yonghong, Z. and Ren, W. (1990), "An experimental study of the strain field development prior to failure of a marble plate under compression.", Tectonophys., 175(6), 269-284. crossref(new window)

Kemeny, J. (2005), "Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities", Int. J. Rock Mech. Min. Sci., 42(1), 35-46. crossref(new window)

Kemeny, J.M. (1991), "A model for non-linear rock deformation under compression due to subcritical crack growth", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28(3), 459-467. crossref(new window)

Kemeny, J.M. and Cook, N.G.W. (1987), "Crack models for the failure of rock under compression", Proc. 2nd Int. Conf. Constitutive Laws for Eng. Materials, 2, 879-887.

Kranz, R.L. (1979), "Crack-crack and crack-pore interaction s in stressed granite", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 37-47.

Kranz, R.L., Microcracks in rocks: A review. Tectonophysics , 1983, 100, 449-480. crossref(new window)

Kulatilake, P.H.S.W., Malama, B. and Wang, J. (2001), "Physical and particle flow modeling of jointed rock block behaviour under uniaxial loading", Int. J. Rock Mech. Min. Sci., 38(5), 641-657. crossref(new window)

Kuntz, M. and Lavallee, P. (1998), "Steady-state flow experiments to visualise the stress field and potential crack trajectories in 2D elastic-brittle cracked media in uniaxial compression", Int. J. Fract., 92(4), 349-357. crossref(new window)

Lajtai, E.Z. (1969b), "Shear strength of weakness planes in rock", Int. J. Rock Mech. Min. Sci., 6(5), 499-515. crossref(new window)

Lajtai, E.Z.(1969a), "Strength of discontinuous rocks in direct shear", Geotech., 19(2), 218-332. crossref(new window)

Li, C., Stephansson, O. and Savilahti, T. (1990), "Behavior of rock joints and rock bridges in shear testing", Proceedings of the International Symposium on Rock Joints, 259-266.

Li, Y., Chen, L. and Wang, Y. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solid. Struct., 42(9), 2505-2516. crossref(new window)

Li, Y.P. and Wang, Y.H. (2003), "Analysis on zigzag cracks in rock-like materials under compression", Acta Mech. Solida Sinica, 24(4), 456-462.

Lin, P., Wong, R.H.C., Chau, K.T. and Tang, C.A. (2000), "Multi-crack coalescence in rock-like material under uniaxial and biaxial loading", Key Eng. Mater., 183, 809-14.

Liu, H.Y., Kou, S.Q., Lindqvist, P.A. and Tang, C.A. (2004), "Numerical simulation of shear fracture (mode II) in heterogeneous brittle rock", Int. J. Rock Mech. Min. Sci., 41, 3. crossref(new window)

Mao, H. and Yang, C. (2009), "Analysis of deformation features of slates with structural surfaces", Chinese J. Underg. Space Eng., 5, 934-938.

Mingli, H., Chunan, T. and Wancheng, Z. (1999), "Real-time SEM study on rock failure instability under uniaxial compression", J. Northeastern Univ. Natural Sci., 20, 429-432.

Mughieda, O. and Alzoubi, A. (2004), "Fracture mechanisms of offset rock joints-A laboratory investigation", Geotech. Geol. Eng., 22, 545-562. crossref(new window)

Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under", Geotech. Geol. Eng., 24, 985-999. crossref(new window)

Mughieda, O. and Omar, M.T. (2008), "Stress analysis for rock mass failure with offset joints", Geotech. Geol. Eng., 26(5), 543-552. crossref(new window)

Mughieda, V. and Khawaldeh, I. (2004), Scale effect on engineering properties of open non-persistent rock joints under uniaxial loading, Bolgesel Kaya Mekanig i Sempozyumu/ ROCKMEC '2004-VIIth Regional Rock Mechanics Symposium, Sivas, Turkiye.

Nemat-Nasser, S. and Horii, H. (1982), "Compression-induced non-planar crack extension with application to splitting, exfoliation and rockburst", J. Geophy. Res., 87(B8), 6805-6821. crossref(new window)

Olsson,W.A. and Pang, S.S. (1976), "Microcrack nucleation in marble", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13(2), 53-59.

Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4), 829-841. crossref(new window)

Papadopoulos, G.A. and Poniridis, P.I. (1989), "Crack initiation under biaxial loading with higher-order approximation", Eng. Fract. Mech., 32(3), 351-360. crossref(new window)

Peng, S. and Johnson, A.M. (1972), "Crack growth and faulting in cylindrical specimens of Chelmsford granite", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 9(1), 37-86, Pergamon. crossref(new window)

Petit, J. P. and Barquins, M. (1988), "Can natural faults propagate under mode II conditions?", Tecton., 7(6), 1243-1256. crossref(new window)

Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. crossref(new window)

Prudencio, M. and Van Sint Jan, M. (2007), "Strength and failure modes of rock mass models with nonpersistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902. crossref(new window)

Pu, C.Z., Cao, P., Zhao Y.L., Zhang, X.Y., Yi, Y.L. and Lit, Y.K. (2010), "Numerical analysis and strength experiment of rock-like materials with multi-fissures under uniaxial compression", J. Rock Soil Mech., 11, 051.

Reyes, O. (1991), "Experimental study, analytic modeling of compressive fracture in brittle materials", Ph.D.Thesis, Massachusetts Institute of Technology, Cambridge.

Reyes, O. and Einstein, H.H. (1991), "Failure mechanism of fractured rock fracture coalescence model", Proceeding of the Seventh Congress of the ISRM, I, 333-40.

Rudajev, V., Vilhelm, J. and Lokajicek, T. (2000), "Laboratory studies of acoustic emission prior to uniaxial compressive rock failure", Int. J. Rock Mech. Min. Sci., 37(4), 699-704. crossref(new window)

Sagong, M. and Bobet, A. (2000), "Coalescence of multiple flaws in uniaxial compression", Proceedings of the North American Rock Mechanics Symposium: Pacific Rocks, 1203-1210.

Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. crossref(new window)

Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall., 34(3), 511-526. crossref(new window)

Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 45(5), 677-693.

Savilahti, T., Nordlund, E. and Stephansson, O. (1990), "Shear box testing and modeling of joint bridge", Proceedings of international symposium on shear box testing and modeling of joint bridge Rock Joints, 295-300, Norway.