A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

- Journal title : Steel and Composite Structures
- Volume 20, Issue 2, 2016, pp.227-249
- Publisher : Techno-Press
- DOI : 10.12989/scs.2016.20.2.227

Title & Authors

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

Bounouara, Fatima; Benrahou, Kouider Halim; Belkorissat, Ismahene; Tounsi, Abdelouahed;

Bounouara, Fatima; Benrahou, Kouider Halim; Belkorissat, Ismahene; Tounsi, Abdelouahed;

Abstract

The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton`s principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

Keywords

nonlocal elasticity theory;nanoscale-plates;free vibration;plate theory;functionally graded materials;

Language

English

Cited by

1.

A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load,;;;

2.

Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation,;;;;

3.

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions,;;

4.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates,;;;;

5.

Bending analysis of FGM plates using a sinusoidal shear deformation theory,;;;

6.

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium,;

7.

A refined theory with stretching effect for the flexure analysis of laminated composite plates,;;;

8.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates,;;;;

9.

A novel four variable refined plate theory for laminated composite plates,;;;

10.

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams,;;;;

11.

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate,;;;

12.

Interfacial stresses in RC beam bonded with a functionally graded material plate,;;;

13.

An analytical approach for buckling of functionally graded plates,;;

14.

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates,;;;;

15.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory,;;;;;;

16.

An efficient shear deformation theory for wave propagation of functionally graded material plates,;;;;;

17.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept,;;;;

18.

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory,;;;;;

19.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory,;;;;

20.

An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations,;;;;;;

21.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,;;;;

22.

An analytical method for free vibration analysis of functionally graded sandwich beams,;;;;

23.

Nonlocal vibration analysis of FG nano beams with different boundary conditions,;;;

24.

A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations,;;;

25.

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory,;;;

26.

Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects,;;;;

27.

On thermal stability of plates with functionally graded coefficient of thermal expansion,;;;;

28.

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory,;;;

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

References

1.

Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45(2), 225-233.

2.

Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289.

3.

Aissani, K., Bachir Bouiadjra, M., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-762.

4.

Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318.

5.

Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384.

6.

Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165.

7.

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630.

8.

Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942.

9.

Ansari, R., Ashrafi, M.A., Pourashraf, T. and Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronautica, 109, 42-51.

10.

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283.

11.

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081.

12.

Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Composites Part B, 42(6), 1386-1394.

13.

Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Composites Part B, 57, 21-24.

14.

Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546.

15.

Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41(22), 225404.

16.

Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365.

17.

Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37.

18.

Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515.

19.

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104.

20.

Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33.

21.

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423.

22.

Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082.

23.

Bunch, J., van der Zande, A.M. and Verbridge, S.S. (2007), "Electromechanical resonators from grapheme sheets", Science, 315(5811), 490-493.

24.

Cheng, Z.-Q. and Batra, R.C. (2000), "Three-dimensional thermoelastic deformations of a functionally graded elliptic plate", Composites: Part B, 31(2), 97-106.

25.

Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156.

26.

Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81.

27.

El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247.

29.

Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.

30.

Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810.

31.

Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999.

32.

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253.

33.

Hashemi, S.H. and Samaei, A.T. (2011), "Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory", Physica E: Low-dimension. Syst. Nanostruct., 43(7), 1400-1404.

34.

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140(2), 374-383.

35.

Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40(8), 2791-2799.

36.

Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale Effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19(18), 185703.

37.

Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118.

38.

Jung, W.-Y. and Han, S.-C. (2013), "Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory", Math. Probl. Eng. DOI: http://dx.doi.org/10.1155/2013/476131

39.

Katsnelson, M.I. and Novoselov, K.S. (2007), "Graphene: New bridge between condensed matter physics and quantum electrodynamics", Solid State Commun., 143(1-2), 3-13.

40.

Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Computat. Method., 11(5), 135007.

41.

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442.

42.

Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., Radmilovic, V., Dahmen, U. and Mitlin, D. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnology, 17(12), 3063.

43.

Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663.

44.

Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M. and Reddy, J.N. (2008), "Non-local elastic plate theories", Proceedings of the Royal Society A., 463(2088), 3225-3240.

45.

Lu, C., Wu, D. and Chen, W. (2011), "Nonlinear responses of nanoscale FGM films including the effects of surface energies", IEEE Transactions on Nanotechnology, 10, 1321-1327.

46.

Lun, F., Zhang, P., Gao, F. and Jia, H. (2006), "Design and fabrication of micro-optomechanical vibration sensor", Microfabrication Technology, 120(1), 61-64.

47.

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508.

48.

Moser, Y. and Gijs, M.A. (2007), "Miniaturized flexible temperature sensor", J. Microelectromech. Syst., 16(6), 1349-1354.

49.

Nami, M.R. and Janghorban, M. (2013), "Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory", Beilstein J. Nanotech., 4(1), 968-973.

50.

Natarajan, S., Baiz, P., Ganapathi, M., Kerfriden, P. and Bordas, S. (2011), "Linear free flexural vibration of cracked functionally graded plates in thermal environment", Comput. Struct., 89(15-16), 1535-1546.

51.

Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Computat. Mater. Sci., 65, 74-80.

52.

Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory" Mech. Compos. Mater., 49(6), 641-650.

53.

Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433.

54.

Phan-Dao, H., Nguyen-Xuan, H., Thai-Hoang, C., Nguyen-Thoi, T. and Rabczuk, T. (2013), "An edgebased smoothed finite element method for analysis of laminated composite plates", Int. J. Computat. Method., 10(1), 1340005.

55.

Pradhan, S.C. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188.

56.

Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method", Comput. Mater. Sci., 50(1), 239-245.

57.

Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A, 373(11), 1062-1069.

58.

Qian, L., Batra, R. and Chen, L. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697.

59.

Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", Proceedings of the 3rd International Conference on Micro-and Nanosystems, San Diego, CA, USA, August-September.

60.

Ray, M.C. (2003), "Zeroth-order shear deformation theory for laminated composite plates", J. Appl. Mech., 70(3), 374-380.

61.

Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307.

62.

Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511.

63.

Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer grapheme sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38(7), 481-485.

64.

Samaei, A.T., Aliha, M.R.M. and Mirsayar, M.M. (2015), "Frequency analysis of a graphene sheet embedded in an elastic medium with consideration of small scale", Mater. Phys. Mech., 22, 125-135.

65.

Sobhy, M. (2014), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mechanica, 225(9), 2521-2538.

66.

Stolken, J. and Evans, A. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115.

67.

Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Method. Eng., 91(6), 571-603.

68.

Tounsi, A., Semmah, A. and Bousahla, A.A. (2013a),"Thermal buckling behavior of nanobeam usin an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech. (ASCE), 3(3), 37-42.

69.

Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013b), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11.

70.

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013c), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220.

71.

Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P.A. (2013), "NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326.

72.

Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", In: Materials Science Forum, Volume 492-493, pp. 255-260.

73.

Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stresses, 36(9), 869-894.

74.

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710.

75.

Zhuang, X., Huang, R., Zhu, H., Askes, H. and Mathisen, K. (2013), "A new and simple locking-free triangular thick plate element using independent shear degrees of freedom", Finite Elem. Anal. Des., 75, 1-7.

76.

Ziane, N., Meftah, S.A., Ruta, G., Tounsi, A. and Adda Bedia, E.A. (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., Int. J., 54(3), 579-595.