JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bolted T-stubs: A refined model for flange and bolt fracture modes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bolted T-stubs: A refined model for flange and bolt fracture modes
Francavilla, Antonella B.; Latour, Massimo; Piluso, Vincenzo; Rizzano, Gianvittorio;
 Abstract
It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.
 Keywords
bolted T-stubs;theoretical model;ductility;steel connections;
 Language
English
 Cited by
1.
Numerical cyclic behavior of T-RBS: A new steel moment connection,;;;

Steel and Composite Structures, 2016. vol.21. 6, pp.1251-1264 crossref(new window)
1.
14.01: Influence of beam-to-column joints on the robustness of earthquake-resistant moment-resistant frames, ce/papers, 2017, 1, 2-3, 3861  crossref(new windwow)
2.
Numerical cyclic behavior of T-RBS: A new steel moment connection, Steel and Composite Structures, 2016, 21, 6, 1251  crossref(new windwow)
3.
Numerical estimation for initial stiffness and ultimate moment of T-stub connections, Journal of Constructional Steel Research, 2018, 141, 118  crossref(new windwow)
 References
1.
Abidelah, A., Bouchair, A. and Kerdal, D. (2014), "Influence of the flexural rigidity of the bolt on the behavior of the T-stub steel connection", Eng. Struct., 81, 181-194. crossref(new window)

2.
Beg, D., Zupancic, E. and Vayas, I. (2004), "On the rotation capacity of moment connections", J. Construct. Steel Res., 60(3-5), 601-620. crossref(new window)

3.
Bernuzzi, C., Zandonini, R. and Zanon, P. (1996), "Experimental analysis and modelling of semi-rigid steel joints under cyclic reversal loading", J. Construct. Steel Res., 38(2), 95-123. crossref(new window)

4.
Bravo, M. and Herrera, R. (2014), "Performance under cyclic load of built-up T-stubs for double T moment connections", J. Construct. Steel Res., 103, 117-130. crossref(new window)

5.
CEN (2005a), Eurocode 3: Design of steel structures-Part 1-1: General rules and rules for buildings, s.l.:s.n.

6.
CEN (2005b), Eurocode 3: Design of steel structures-Part 1-8: Design of joints, s.l.:s.n.

7.
Davids, E., Troxell, G. and Hanck, G. (1982), The Testing of Engineering Materials, McGraw-Hill, New York, NY, USA.

8.
Douty, T. and McGuire, W. (1965), "High strength bolted moment connections", J. Struct. Div., 91(2), 101-128.

9.
Faella, C., Piluso, V. and Rizzano, G. (1998), "Experimental analysis of bolted connections: Snug versus preloaded bolts", J. Struct. Eng., 124(7), 765-774. crossref(new window)

10.
Faella, C., Piluso, V. and Rizzano, G. (2000), Structural Steel Semi-Rigid Connections, CRC Press, Boca Raton, FL, USA.

11.
Fontana (2004), Prescrizioni Tecniche, s.l.: s.n.

12.
Girao Coelho, A.M., Bijlaard, F. and Simoes Da Silva, L. (2004a), "Experimental assessment of the ductility of extended end plate connections", Eng. Struct., 26(9), 1185-1206. crossref(new window)

13.
Girao Coelho, A.M.G., da Silva, L.S. and Bijlaard, F.S.K. (2004b), "Characterization of the nonlinear behavior of single bolted T-tub connections", Connections in Steel Structures V, Amsterdam, The Netherlands, pp. 53-64.

14.
Hantouche, E. and Abboud, N. (2014), "Stiffness modeling of bolted thick built-up T-stub connections including secondary prying effect", J. Construct. Steel Res., 95, 279-289. crossref(new window)

15.
Hantouche, E., Kukreti, A. and Rassati, G. (2012a), "Investigation of secondary prying in thick built-up Tstub connections using nonlinear finite element modeling", Eng. Struct., 36, 113-122. crossref(new window)

16.
Hantouche, E., Kukreti, A., Rassati, G. and Swanson, J. (2012b), "Built-up T-stub connections for moment resisting frames: Experimental and finite element investigation for prequalification", Eng. Struct., 43, 139-148. crossref(new window)

17.
Hantouche, E., Kukreti, A., Rassati, G. and Swanson, J. (2013), "Modified stiffness model for thick flange in built-up T-stub connections", J. Construct. Steel Res., 81, 76-85. crossref(new window)

18.
Hu, J., Leon, R. and Park, T. (2012), "Mechanical models for the analysis of bolted T-stub connections under cyclic loads", J. Construct. Steel Res., 78, 45-57. crossref(new window)

19.
Iannone, F., Latour, M., Piluso, V. and Rizzano, G. (2011), "Experimental analysis of bolted steel beam-tocolumn connections: Component identification", J. Earthq. Eng., 15(2), 214-244. crossref(new window)

20.
Jaspart, J. (1991), "Etude de la Semi-rigidite Des Noeuds Poutre-Colonne et son Influence sur la Resistance et la Stabilite des Ossature en Acier", Ph.D. Tesis; University of Liege, Liege, Belgium.

21.
Kulak, G., Fisher, J. and Struik, J. (1987), Guide to Design Criteria for Bolted and Riveted Joints, John Wiley & Sons.

22.
Latour, M. and Rizzano, G. (2013), "A theoretical model for predicting the rotational capacity of steel base joints", J. Construct. Steel Res., 91, 88-99.

23.
Latour, M., Piluso, V. and Rizzano, G. (2011a), "Cyclic modeling of bolted beam-to-column connections: Component approach", J. Earthq. Eng., 15(4), 537-563. crossref(new window)

24.
Latour, M., Piluso, V. and Rizzano, G. (2011b), "Experimental analysis of innovative dissipative bolted double split tee beam-to-column connections", Steel Construct., 4(2), 53-64. crossref(new window)

25.
Latour, M., Piluso, V. and Rizzano, G. (2014), "Rotational behaviour of column base plate connections: Experimental analysis and modelling", Eng. Struct., 68, 14-23. crossref(new window)

26.
Lemonis, M.E. and Gantes, C.J. (2006), "Incremental modeling of T-stub connections", J. Mech. Mater. and Struct., 1(7), 1135-1159. crossref(new window)

27.
Leon, R. and Swanson, J. (2000), "Bolted steel connections: Tests on T-stub components", J. Struct. Eng., 126(1), 50-56. crossref(new window)

28.
Malvern, L. (1969), Introduction of the Mechanics of the Continuous Medium, Prentice-Hall, NJ, USA.

29.
Nair, R.S., Birkemoe, P.C. and Munse, W.H. (1974), "High strength bolts subject to tension and prying", J. Struct. Div., ASCE, 100(2), 351-372.

30.
Piluso, V. and Rizzano, G. (2008), "Experimental analysis and modelling of bolted T-stubs under cyclic loads", J. Construct. Steel Res., 64(6), 655-669. crossref(new window)

31.
Piluso, V., Faella, C. and Rizzano, G. (2001), "Ultimate behavior of bolted T-stubs. Part I: Theoretical model", J. Struct. Eng. ASCE, 127(6), 686-693. crossref(new window)

32.
Pozzati, P. (1980), Teoria e Tecnica delle strutture, UTET, Torino, Italy.

33.
Reinosa, J., Loureiro, A., Gutierrez, R. and Lopez, M. (2013), "Analytical frame approach for the axial stiffness prediction of preloaded T-stubs", J. Construct. Steel Res., 90, 156-163. crossref(new window)

34.
RILEM (1990), "Draft recommendation-Tension testing of metallic structural materials for determining stress-strain relations under monotonic and uniaxial tensile loading", Mater. Struct., 23(1), 35-46. crossref(new window)

35.
Saberi, V., Gerami, M. and Kheyroddin, A. (2014), "Comparison of bolted end plate and T-stub connection sensitivity to component thickness", J. Construct. Steel Res., 98, 134-145. crossref(new window)

36.
Swanson, J. (1999), "Characterization of the strength, stiffness and ductility behavior of T-stub connections", Ph.D. Thesis; Georgia Institute of Technology.

37.
Swanson, J. (2002), "Ultimate strength prying models for bolted T-stub connections", Eng. J., 3, 136-147.

38.
Swanson, J. and Leon, R. (2001), "Stiffness modeling of bolted T-stub connection components", J. Struct. Eng., 127(5), 498-505. crossref(new window)

39.
Takhirov, S.M. and Popov, E.P. (2002), "Bolted large seismic steel beam-to-column connections Part 2: Numerical nonlinear analysis", Eng. Struct., 43(12), 1535-1545.

40.
Yee, Y. and Melchers, R. (1986), "Moment-rotation curves for bolted connections", J. Struct. Eng. ASCE, 112(3), 615-635. crossref(new window)

41.
Zoetemeijer, P. (1974), "A design method for the tension side of statically loaded, bolted beam-to-column connections", Heron, 20(1), 1-59.