JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Iterative global-local procedure for the analysis of thin-walled composite laminates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Iterative global-local procedure for the analysis of thin-walled composite laminates
Afnani, Ashkan; Erkmen, R. Emre;
 Abstract
This paper presents a finite element procedure based on Bridging multi-scale method (BMM) in order to incorporate the effect of local/cross-sectional deformations (e.g., flange local buckling and web crippling) on the global behaviour of thin-walled members made of fibre-reinforced polymer composite laminates. This method allows the application of local shell elements in critical regions of an existing beam-type model. Therefore, it obviates the need for using computationally expensive shell elements in the whole domain of the structure, which is otherwise necessary to capture the effect of the localized behaviour. Consequently, highly accurate analysis results can be achieved with this method by using significantly smaller finite element model, compared to the existing methods. The proposed method can be used for composite polymer laminates with arbitrary fibre orientation directions in different layers of the material, and under various loading conditions. Comparison with full shell-type finite element analysis results are made in order to illustrate the efficiency and accuracy of the proposed technique.
 Keywords
iterative global-local analysis;bridging multi-scale method;buckling;composite members;local deformations;
 Language
English
 Cited by
1.
A Shell Element for Buckling Analysis of Thin-Walled Composite-Laminated Members, International Journal of Structural Stability and Dynamics, 2018, 18, 02, 1850021  crossref(new windwow)
 References
1.
Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Method. Eng., 40(4), 727-758. crossref(new window)

2.
Babuska, I., Banerjee, U. and Osborn, J.E. (2003), "Survey of meshless and generalized finite element methods: A unified approach", Acta Numer., 12, 1-125. crossref(new window)

3.
Back, S.Y. and Will, K.M. (2008), "Shear-flexible thin-walled element for composite I-beams", Eng. Struct., 30(5), 1447-1458. crossref(new window)

4.
Batoz, J.L. and Tahar, M.B. (1982), "Evaluation of a new quadrilateral thin plate bending element", Int. J. Numer. Method. Eng., 18(11), 1655-1677. crossref(new window)

5.
Bauld, N.R. and Tzeng, L.S. (1984), "A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections", Int. J. Solid. Struct., 20(3), 277-297. crossref(new window)

6.
Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), "Meshless methods: An overview and recent developments", Comput. Method. Appl. Mech. Eng., 139(1-4), 3-47. crossref(new window)

7.
Belytschko, T., Moes, N., Usui, S. and Parimi, C. (2001), "Arbitrary discontinuities in finite elements", Int. J. Numer. Method. Eng., 50(4), 993-1013. crossref(new window)

8.
Bradford, M.A. (1992), "Lateral-distortional buckling of steel I-section members", J. Construct. Steel Res., 23(1-3), 97-116. crossref(new window)

9.
Bradford, M.A. and Hancock, G.J. (1984), "Elastic interaction of local and lateral buckling in beams", Thin-Wall. Struct., 2(1), 1-25. crossref(new window)

10.
Cardoso, J.E.B., Benedito, N.M.B. and Valido, A.J.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin-Wall. Struct., 47(11), 1363-1372.

11.
Davies, J.M., Leach, P. and Heinz, D. (1994), "Second-order generalised beam theory", J. Construct. Steel Res., 31(2-3), 221-241. crossref(new window)

12.
Erkmen, R.E. (2013), "Bridging multi-scale approach to consider the effects of local deformations in the analysis of thin-walled members", Computat. Mech., 52(1), 65-79. crossref(new window)

13.
Erkmen, E. and Bradford, M.A. (2011), "Coupling of finite element and meshfree methods be for lockingfree analysis of shear-deformable beams and plates", Eng. Computat., 28(8), 1003-1027. crossref(new window)

14.
Feyel, F. (2003), "A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua", Comput. Method. Appl. Mech. Eng., 192(28-30), 32-44.

15.
Fish, J., Markolefas, S., Guttal, R. and Nayak, P. (1994), "On adaptive multilevel superposition of finite element meshes for linear elastostatics", Appl. Numer. Math., 14(1-3), 135-164. crossref(new window)

16.
Geers, M.G.D., Kouznetsova, V.G. and Brekelmans, W.A.M. (2010), "Multi-scale computational homogenization: Trends and challenges", J. Computat. Appl. Math., 234(7), 2175-2182. crossref(new window)

17.
Hughes, T.J.R. and Sangalli, G. (2007), "Variational multiscale analysis: The fine-scale green's function, projection, optimization, localization, and stabilized methods", SIAM J. Numer. Anal., 45(2), 539-557. crossref(new window)

18.
Hughes, T.J.R., Feijoo, G.R., Mazzei, L. and Quincy, J.B. (1998), "The variational multiscale method - A paradigm for computational mechanics", Comput. Method. Appl. Mech. Eng., 166(1-2), 3-24. crossref(new window)

19.
Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "Robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Method. Eng., 30(3), 445-457. crossref(new window)

20.
Kadowaki, H. and Liu, W.K. (2004), "Bridging multi-scale method for localization problems", Comput. Method. Appl. Mech. Eng., 193(30-32), 3267-3302. crossref(new window)

21.
Kim, N.I., Shin, D.K. and Kim, M.Y. (2007), "Exact lateral buckling analysis for thin-walled composite beam under end moment", Eng. Struct., 29(8), 1739-1751. crossref(new window)

22.
Kollar, L.P. (1991), "Mechanics of laminated composite plates and shells", Int. J. Solid. Struct., 38(42), 7525-7541.

23.
Lee, J. (2006), "Lateral buckling analysis of thin-walled laminated composite beams with monosymmetric sections", Eng. Struct., 28(14), 1997-2009. crossref(new window)

24.
Lee, J., Kim, S.E. and Hong, K. (2002), "Lateral buckling of I-section composite beams", Eng. Struct., 24(7), 955-964. crossref(new window)

25.
Li, S. and Liu, W.K. (2002), "Meshfree and particle methods and their applications", Appl. Mech. Rev., 55(1), 1-34. crossref(new window)

26.
Liu, W.K., Li, S. and Belytschko, T. (1997), "Moving least-square reproducing kernel methods (I) methodology and convergence", Comput. Method. Appl. Mech. Eng., 143(1-2), 113-154. crossref(new window)

27.
Liu, W.K., Hao, S., Belytschko, T., Li, S. and Chang, C.T. (2000), "Multi-scale methods", Int. J. Numer. Method. Eng., 47(7), 1343-1361. crossref(new window)

28.
Machado, S.P. (2010), "Interaction of combined loads on the lateral stability of thin-walled composite beams", Eng. Struct., 32(11), 3516-3527. crossref(new window)

29.
Mittelstedt, C. (2007), "Local buckling of wide-flange thin-walled anisotropic composite beams", Arch. Appl. Mech., 77(7), 439-452. crossref(new window)

30.
Oden, J.T., Prudhomme, S., Romkes, A. and Bauman, P.T. (2006), "Multiscale modeling of physical phenomena: Adaptive control of models", SIAM J. Scientif. Comput., 28(6), 2359-2389. crossref(new window)

31.
Omidvar, B. and Ghorbanpoor, A. (1996), "Nonlinear FE solution for thin-walled open-section composite beams", J. Struct. Eng., 122(11), 1369-1377. crossref(new window)

32.
Pandey, M.D., Kabir, M.Z. and Sherbourne, A.N. (1995), "Flexural-torsional stability of thin-walled composite I-section beams", Compos. Eng., 5(3), 321-342. crossref(new window)

33.
Qian, D., Wagner, G.J. and Liu, W.K. (2004), "A multi-scale projection method for the analysis of carbon nanotubes", Comput. Method. Appl. Mech. Eng. Computat., 193(17-20), 1603-1632. crossref(new window)

34.
Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd Edition), CRC Press, Boca Raton, FL, USA.

35.
Roberts, T.M. (2002), "Influence of shear deformation on buckling of pultruded fiber reinforced plastic profiles", J. Compos. Construct., 6(4), 241-248. crossref(new window)

36.
Roberts, T.M. and Masri, H.M.K.J.A.H. (2003), "Section properties and buckling behavior of pultruded FRP profiles", J. Reinf. Plast. Compos., 22(14), 1305-1317. crossref(new window)

37.
Ronagh, H.R. and Bradford, M.A. (1996), "A rational model for the distortional buckling of tapered members", Comput. Method. Appl. Mech. Eng., 130(3-4), 263-277. crossref(new window)

38.
Sapkas, A. and Kollar, L.P. (2002), "Lateral-torsional buckling of composite beams", Int. J Solid. Struct., 39(1), 2939-2963. crossref(new window)

39.
Schafer, B.W. (2008), "Review: The direct strength method of cold-formed steel member design", J. Construct. Steel Res., 64(7-8), 766-778. crossref(new window)

40.
Strouboulis, T., Copps, K. and Babuska, I. (2001), "Computational mechanics advances. The generalized finite element method", Comput. Method. Appl. Mech. Eng., 190(32-33), 4081-4193. crossref(new window)

41.
Trahair, N.S. (2003), Flexural-Torsional Buckling of Structures, Spon Press, London, UK.

42.
Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method for Solid and Structural Mechanics, (6th Edition), Butterworth-Heinemann, Oxford, UK.