JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Free vibration analysis of composite cylindrical shells with non-uniform thickness walls
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Free vibration analysis of composite cylindrical shells with non-uniform thickness walls
Javed, Saira; Viswanathan, K.K.; Aziz, Z.A.;
 Abstract
The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.
 Keywords
free vibration;anti-symmetric;non-uniform thickness;shear deformation;spline approximation;frequency parameter;
 Language
English
 Cited by
1.
Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells,;;

Steel and Composite Structures, 2016. vol.22. 5, pp.1193-1214 crossref(new window)
 References
1.
Alibeigloo, A. (2009), "Static and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space differential quadrature method", Int. J. Pres. Ves. Pip., 86(11), 738-747. crossref(new window)

2.
Alibeigloo, A. and Shakeri, M. (2007), "Elasticity solution for the free vibration analysis of Laminated cylindrical panels using the differential quadrature method", Compos. Struct., 81(1), 105-113. crossref(new window)

3.
Alibeigloo, A., Kani, A.M. and Pashaei, M.H. (2012), "Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers", Int. J. Pres. Ves. Pip., 89, 98-111. crossref(new window)

4.
Asgari, M. (2015), "Material distribution optimization of 2D heterogeneous cylinder under thermomechanical loading", Struct. Eng. Mech., Int. J., 53(4), 703-723. crossref(new window)

5.
Bickley, W.G. (1968), "Piecewise cubic interpolation and two-point boundary problems", Comput. J., 11(2), 206-208. crossref(new window)

6.
Beni, Y.T. and Zeverdejani, M.K. (2014), "Free vibration of microtubules as elastic shell model based on modified couple stress theory", J. Mech. Med. Biol., 15(3), 1550037.

7.
Chaudhuri, R.A. and Abu-Arja, K.R. (1991), "Static analysis of moderately-thick finite antisymmetric angleply cylindrical panels and shells", Int. J. Solid. Struct., 28(1), 1-15. crossref(new window)

8.
Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110. crossref(new window)

9.
Chorfi, S. and Houmat, A. (2010), "Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form", Compos. Struct., 92(10), 2573-2581. crossref(new window)

10.
Edalat, P., Khedmati, M.R. and Soares, C.G. (2014), "Free vibration analysis of open thin deep shells with variable radii of curvature", Meccanica, 49(6), 1385-1405. crossref(new window)

11.
Featherston, D. and Barabasz, M. (2000), "Loudspeaker response improvement using cone thickness variation", J. Audio Eng. Soc., 48(12), 1216-1220.

12.
Ferreira, A.J.M., Carrera, E. and Cinefra, M. (2011), "Analysis of laminated doubly-curved shellsby a layerwise theory and radial basis functions collotion, accounting for through-the-thickness deformations", Comput. Mech., 48(1), 13-25. crossref(new window)

13.
George, H.S. (1999), Laminar Composites, Butterworth-Heinemann Publications, USA.

14.
Hosseini-Hashemi, S., Abaei, A.R. and Ilkhani, M.R. (2015), "Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions", Compos. Struct., 126, 1-15. crossref(new window)

15.
Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), "Free vibration of anti-symmetric angleply plates with variable thickness", Compos. Struct., 137, 56-69. crossref(new window)

16.
Kang, J.H. (2012), "Three-dimensional vibration of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. crossref(new window)

17.
Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. crossref(new window)

18.
Katariya, P.V., Panda, S.K. and Isikveren, A. (2015), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107.

19.
Khalifa, A.M. (2012), "A solution of free vibration and stability problem of an axially loaded cylindrical shell with a four lobed cross section of variable thickness", Kuwait J. Sci. Eng., 39(2), 69-90.

20.
Khan, K., Patel, B.P. and Nath, Y. (2015), "Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells", Compos. Struct., 126, 386-397. crossref(new window)

21.
Liew, K.M., Bergman, L.A., Ng, T.Y. and Lam, K.Y. (2000), "Three-dimensional vibration of cylindrical shell panels-solution by continuum and discrete approaches", Computat. Mech., 26(2), 208-221. crossref(new window)

22.
Lopatin, A.V. and Morozov, E.V. (2015), "Fundamental frequency of the laminated composite cylindrical shell with clamped edges", Int. J. Mech. Sci., 92, 35-43. crossref(new window)

23.
Mahapatra, T. and Panda, S. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using non-linear FEM", J. Therm. Stress., 38(1), 39-68. crossref(new window)

24.
Mahapatra, T., Kar, V. and Panda, S. (2014), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", Int. J. Struct. Stab. Dy., 16, 1450105.

25.
Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 1099636215577363.

26.
Narita, Y., Ohta, Y., Yamada, G. and Kobayashi, Y. (1992), "Analytical method for vibration of angle-ply cylindrical shells having arbitrary edges", AIAA journal, 30(3), 790-796. crossref(new window)

27.
Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18 (1), 91-120. crossref(new window)

28.
Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solid. Struct., 36(10), 1523-1540. crossref(new window)

29.
Panda, S. and Mahapatra, T. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. crossref(new window)

30.
Panda, S. and Singh, B. (2009), "Nonlinear free vibration of spherical shell panel using higher order shear deformation theory-a finite element approach", Int. J. Pres. Ves. Pip., 86(6), 373-383. crossref(new window)

31.
Qu, Y., Long, X., Wu, S. and Meng, G. (2013), "A unified formulation for vibration analysis of composite lamniated shells of revolution including shear deformation and rotary inertia", Compos. Struct., 98, 169-191. crossref(new window)

32.
Sahan, M.F. (2015), "Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation", Steel Compos. Struct., Int. J., 18(4), 889-907. crossref(new window)

33.
Sahoo, S.S., Panda, S.K. and Singh, V.K. (2015), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 1464420715600191.

34.
Selahi, E., Setoodeh, A.R. and Tahani, M. (2014), "Three-dimentional transient analysis of functionally graded truncated conical shells with variable thickness subjected to an asymmetric dynamic pressure", Int. J. Pres. Ves. Pip., 119, 29-38. crossref(new window)

35.
Shao, Z.S. and Ma, G.W. (2007), "Free vibration analysis of laminated cylindrical shells by using fourier series expansion method", J. Thermoplast. Compos. Mater., 20(6), 551-573. crossref(new window)

36.
Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., Int. J., 19(1), 1-19. crossref(new window)

37.
Soldatos, K.P. and Messina, A. (2001), "The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels", Comput. Method. Appl. Mech. Eng., 190(18-19), 2385-2409. crossref(new window)

38.
Viswanathan, K.K., Kim, K.S., Lee, J.H., Koh, H.S. and Lee, J.B. (2008), "Free vibration of multilayered circular cylindrical shell with cross-ply walls, including shear deformation by using spline function method", J. Mech. Sci. Technol., 22(11), 2062-2075. crossref(new window)

39.
Viswanathan, K.K. and Kim, K.S. (2008), "Free vibration of antisymmetric angle-ply-laminated plates including shear deformation: Spline method", Int. J. Mech. Sci., 50(10-11), 1476-1485. crossref(new window)

40.
Viswanathan, K., Javed, S., Prabakar, K., Aziz, Z.A. and Bakar, I.A. (2015a), "Free vibration of antisymmetric angle-ply laminated conical shells", Compos. Struct., 122, 488-495. crossref(new window)

41.
Viswanathan, K., Aziz. Z.A., Javed., S., Yaacob, Y. and Pullepu, B. (2015b), "Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method", Journal of Mech. Sci. Technol., 29(5), 2073-2080. crossref(new window)

42.
Viswanathan, K.K., Javed, S., Aziz, Z.A. and Prabakar, K. (2015c), "Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory", Meccanica, 50(12), 3013-3027. crossref(new window)

43.
Viswanathan, K.K. and Javed, S. (2016), "Free vibration of anti-symmetric angle-ply cylindrical shell walls using first-order shear deformation theory", J. Vib. Control, 1077546314544893.

44.
Zeighampour, H. and Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85(4), 539-553. DOI: 10.1007/s00419-014-0929-8 crossref(new window)

45.
Zeighampour, H., Beni, Y.T. and Mehralian, F. (2015), "A shear deformable conical shell formulation in the framework of couple stress theory", Acta Mechanica, 226(8), 1-23. crossref(new window)

46.
Zerin, Z. (2013), "On the vibration of laminated nonhomogeneous orthotropic shells", Meccanica, 48(7), 1557-1572. crossref(new window)