JOURNAL BROWSE
Search
Advanced SearchSearch Tips
2D deformation in initially stressed thermoelastic half-space with voids
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
2D deformation in initially stressed thermoelastic half-space with voids
Abbas, Ibrahim A.; Kumar, Rajneesh;
 Abstract
The present investigation is to study the plane problem in initially stressed thermoelastic half-space with voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation time has been used to investigate the problem. A particular type of thermal source has been taken as an application of the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, temperature change and volume fraction field are computed numerically. The resulting quantities are depicted graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a significant effect on all distributions.
 Keywords
thermoelastic half-space;voids;initially stressed;thermal sources finite element;
 Language
English
 Cited by
1.
Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse,;;

Steel and Composite Structures, 2016. vol.21. 4, pp.791-803 crossref(new window)
1.
Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse, Steel and Composite Structures, 2016, 21, 4, 791  crossref(new windwow)
2.
Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity, Microsystem Technologies, 2017  crossref(new windwow)
3.
A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole, The European Physical Journal Plus, 2018, 133, 1  crossref(new windwow)
 References
1.
Abbas, I.A. (2013), "A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole", Appl. Math. Lett., 26(2), 232-239. crossref(new window)

2.
Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. crossref(new window)

3.
Abbas, I.A. (2014b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. crossref(new window)

4.
Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. crossref(new window)

5.
Abbas, I.A. and Othman, M.I. (2011), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2) 175-182.

6.
Abo-Dahab, S.M. and Singh, B. (2013), "Rotational and voids effect on the reflection of P waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation", Appl. Math. Model., 37(20-21), 8999-9011. crossref(new window)

7.
Acharya, D.P., Roy, I. and Sengupta, S. (2009), "Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media", Acta Mechanics, 202(1), 35-45. crossref(new window)

8.
Bachher, M., Sarkar, N. and Lahiri, N.A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91. crossref(new window)

9.
Bachher, M., Sarkar, N. and Lahiri, N.A. (2015), "Fractional order thermoelastic interactions in an infinite voids material due to distributed time-dependent heat sources", Meccanica, 50(8), 2167-2178. crossref(new window)

10.
Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. crossref(new window)

11.
Birsan, M. (2000), "Existence and uniqueness of weak solution in the linear theory of elastic shells with voids", Libertas Math., 20, 95-105.

12.
Chirita, S. and Scalia, A. (2001), "On the spatial and temporal behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 24(5), 433-455. crossref(new window)

13.
Ciarletta, M. and Scalia, A. (1993a), "On the nonlinear theory of non simple thermoelastic materials with voids", Z. Angew. Math. Mech., 73(2), 67-75. crossref(new window)

14.
Ciarletta, M. and Scalia, A. (1993b), "On uniqueness and reciprocity in linear thermoelasticity of material with voids", Journal of Elasticity, 32(1), 1-17. crossref(new window)

15.
Ciarletta, M. and Scarpetta, E. (1995), "Some results on thermoelasticity for dielectric materials with voids", Z. Angew. Math. Mech., 75(9), 707-714. crossref(new window)

16.
Ciarletta, M., Iovane, G. and Sumbatyan, M.A. (2003), "On stress analysis for cracks in elastic materials with voids", Int. J. Eng. Sci., 41(20), 2447-2461. crossref(new window)

17.
Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13(2), 25-147.

18.
Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828. crossref(new window)

19.
Dhaliwal, R.S. and Wang, J. (1995), "A heat-flux dependent theory of thermoelasticity with voids", Acta Mech., 110(1), 33-39. crossref(new window)

20.
Fahmy, M.A. and El-Shahat, T.M. (2008), "The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid", Arch. Appl. Mech., 78(6), 431-442. crossref(new window)

21.
Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. crossref(new window)

22.
Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194. crossref(new window)

23.
Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. crossref(new window)

24.
Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. crossref(new window)

25.
Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mechanica, 60(1), 67-89. crossref(new window)

26.
Iesan, D. (1987), "A theory of initially stressed thermoelastic materials with voids", An. St. Univ. Iasi, S. I-a Matematica, 33, 167-184.

27.
Iesan, D. (2004), Thermoelastic Models of Continua, Springer, Berlin, Germany.

28.
Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. crossref(new window)

29.
Marin, M. (1997a), "A uniqueness result for body with voids in linear thermoelasticity", Rend. Mat. Appl., 17(7), 103-113.

30.
Marin, M. (1997b), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno), 33(4), 301-308.

31.
Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Cienc. Mat. (Havana), 16(2), 101-109.

32.
Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. crossref(new window)

33.
Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal.: Real World Appl., 10(3), 1572-1578. crossref(new window)

34.
Marin, M. and Salca, H. (1998), "A rrelation of Knopoff-de hoop type in thermoelasticity of Dipolar Bodies with voids", Theor. Appl. Mech., 24, 99-110.

35.
Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(2), 175-201. crossref(new window)

36.
Pompei, A. and Scalia, A. (2002), "On the asymptotic spatial behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 25(2), 183-193. crossref(new window)

37.
Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elasticity, 15(2), 167-183. crossref(new window)

38.
Rusu, G. (1987), "On existence and uniqueness in thermoelasticity of materials with voids", B. Acad. Pol. Sci. Tech., 35(7-8), pp. 339-346.

39.
Saccomandi, G. (1992), "Some remarks about the thermoelastic theory of materials with voids", Rend. Mat. Appl., 12(7), 45-58.

40.
Scarpetta, E. (1995), "Well posedness theorems for linear elastic materials with voids", Int. J. Eng. Sci., 33(2), 151-161. crossref(new window)

41.
Sharma, J.N. and Grover, D. (2012), "Thermoelastic vibration analysis of Mems/Nems plate resonators with voids", Acta Mechanica, 223(1), 167-187. crossref(new window)

42.
Singh, B., Kumar, A. and Singh, J. (2006), "Reflection of generalized thermoelastic waves from a solid halfspace under hydrostatic initial stress", Appl. Math. Comput., 177(1), 170-177.

43.
Tomar, S.K. and Ogden, R.W. (2014), "Two-dimensional wave propagation in a rotating elastic solid with voids", J. Sound Vib., 333(7), 1945-1952. crossref(new window)

44.
Wriggers, P. (2008), Nonlinear Finite Element Methods, Berlin Heidelberg, Springer-Verlag.

45.
Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperaturedependent hollow cylinders using a finite element model", Int. J. Struct. Stabil. Dyn., 14(7), 1450025. crossref(new window)