2D deformation in initially stressed thermoelastic half-space with voids

- Journal title : Steel and Composite Structures
- Volume 20, Issue 5, 2016, pp.1103-1117
- Publisher : Techno-Press
- DOI : 10.12989/scs.2016.20.5.1103

Title & Authors

2D deformation in initially stressed thermoelastic half-space with voids

Abbas, Ibrahim A.; Kumar, Rajneesh;

Abbas, Ibrahim A.; Kumar, Rajneesh;

Abstract

The present investigation is to study the plane problem in initially stressed thermoelastic half-space with voids due to thermal source. Lord-Shulman (Lord and Shulman 1967) theory of thermoelasticity with one relaxation time has been used to investigate the problem. A particular type of thermal source has been taken as an application of the approach. Finite element technique has been used to solve the problem. The components of displacement, stress, temperature change and volume fraction field are computed numerically. The resulting quantities are depicted graphically for different values of initial stress parameter. The relaxation time and the initial stress parameter have a significant effect on all distributions.

Keywords

thermoelastic half-space;voids;initially stressed;thermal sources finite element;

Language

English

Cited by

1.

2.

References

1.

Abbas, I.A. (2013), "A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole", Appl. Math. Lett., 26(2), 232-239.

2.

Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384.

3.

Abbas, I.A. (2014b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992.

4.

Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190.

5.

Abbas, I.A. and Othman, M.I. (2011), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2) 175-182.

6.

Abo-Dahab, S.M. and Singh, B. (2013), "Rotational and voids effect on the reflection of P waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation", Appl. Math. Model., 37(20-21), 8999-9011.

7.

Acharya, D.P., Roy, I. and Sengupta, S. (2009), "Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media", Acta Mechanics, 202(1), 35-45.

8.

Bachher, M., Sarkar, N. and Lahiri, N.A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91.

9.

Bachher, M., Sarkar, N. and Lahiri, N.A. (2015), "Fractional order thermoelastic interactions in an infinite voids material due to distributed time-dependent heat sources", Meccanica, 50(8), 2167-2178.

10.

Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253.

11.

Birsan, M. (2000), "Existence and uniqueness of weak solution in the linear theory of elastic shells with voids", Libertas Math., 20, 95-105.

12.

Chirita, S. and Scalia, A. (2001), "On the spatial and temporal behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 24(5), 433-455.

13.

Ciarletta, M. and Scalia, A. (1993a), "On the nonlinear theory of non simple thermoelastic materials with voids", Z. Angew. Math. Mech., 73(2), 67-75.

14.

Ciarletta, M. and Scalia, A. (1993b), "On uniqueness and reciprocity in linear thermoelasticity of material with voids", Journal of Elasticity, 32(1), 1-17.

15.

Ciarletta, M. and Scarpetta, E. (1995), "Some results on thermoelasticity for dielectric materials with voids", Z. Angew. Math. Mech., 75(9), 707-714.

16.

Ciarletta, M., Iovane, G. and Sumbatyan, M.A. (2003), "On stress analysis for cracks in elastic materials with voids", Int. J. Eng. Sci., 41(20), 2447-2461.

17.

Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13(2), 25-147.

18.

Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828.

19.

Dhaliwal, R.S. and Wang, J. (1995), "A heat-flux dependent theory of thermoelasticity with voids", Acta Mech., 110(1), 33-39.

20.

Fahmy, M.A. and El-Shahat, T.M. (2008), "The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid", Arch. Appl. Mech., 78(6), 431-442.

22.

Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194.

23.

Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264.

24.

Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208.

25.

26.

Iesan, D. (1987), "A theory of initially stressed thermoelastic materials with voids", An. St. Univ. Iasi, S. I-a Matematica, 33, 167-184.

27.

Iesan, D. (2004), Thermoelastic Models of Continua, Springer, Berlin, Germany.

28.

Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309.

29.

Marin, M. (1997a), "A uniqueness result for body with voids in linear thermoelasticity", Rend. Mat. Appl., 17(7), 103-113.

30.

Marin, M. (1997b), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno), 33(4), 301-308.

31.

Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Cienc. Mat. (Havana), 16(2), 101-109.

32.

Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399.

33.

Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal.: Real World Appl., 10(3), 1572-1578.

34.

Marin, M. and Salca, H. (1998), "A rrelation of Knopoff-de hoop type in thermoelasticity of Dipolar Bodies with voids", Theor. Appl. Mech., 24, 99-110.

35.

Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(2), 175-201.

36.

Pompei, A. and Scalia, A. (2002), "On the asymptotic spatial behavior in linear thermoelasticity of materials with voids", J. Therm. Stress., 25(2), 183-193.

37.

Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elasticity, 15(2), 167-183.

38.

Rusu, G. (1987), "On existence and uniqueness in thermoelasticity of materials with voids", B. Acad. Pol. Sci. Tech., 35(7-8), pp. 339-346.

39.

Saccomandi, G. (1992), "Some remarks about the thermoelastic theory of materials with voids", Rend. Mat. Appl., 12(7), 45-58.

40.

Scarpetta, E. (1995), "Well posedness theorems for linear elastic materials with voids", Int. J. Eng. Sci., 33(2), 151-161.

41.

Sharma, J.N. and Grover, D. (2012), "Thermoelastic vibration analysis of Mems/Nems plate resonators with voids", Acta Mechanica, 223(1), 167-187.

42.

Singh, B., Kumar, A. and Singh, J. (2006), "Reflection of generalized thermoelastic waves from a solid halfspace under hydrostatic initial stress", Appl. Math. Comput., 177(1), 170-177.

43.

Tomar, S.K. and Ogden, R.W. (2014), "Two-dimensional wave propagation in a rotating elastic solid with voids", J. Sound Vib., 333(7), 1945-1952.

44.

Wriggers, P. (2008), Nonlinear Finite Element Methods, Berlin Heidelberg, Springer-Verlag.