JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Prediction of Poisson`s ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Prediction of Poisson`s ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates
Khodjet-Kesb, M.; Adda bedia, E.A.; Benkhedda, A.; Boukert, B.;
 Abstract
The Poisson ratio reduction of symmetric hygrothermal aged composite laminates containing a transverse cracking in mid-layer is predicted by using a modified shear-lag model. Good agreement is obtained by comparing the prediction models and experimental data published by Joffe et al. (2001). The material properties of the composite are affected by the variation of temperature and transient moisture concentration distribution in desorption case, and are based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution give rise to the transient Poisson ratio reduction. The obtained results represent well the dependence of the Poisson ratio degradation on the cracks density, fibre orientation angle of the outer layers and transient environmental conditions. Through the presented study, we hope to contribute to the understanding of the hygrothermal behaviour of cracked composite laminate.
 Keywords
transverse cracking;poisson ratio;hygrothermal effect;Tsai model;desorption;
 Language
English
 Cited by
1.
Moisture absorption effect on the stress distribution of the cross-ply laminates with transverse matrix cracks, Procedia Structural Integrity, 2017, 5, 271  crossref(new windwow)
 References
1.
Adda bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates with transverse cracking", J. Mater. Proc., 199(1-3), 199-205. crossref(new window)

2.
Akula, V.M.K. and Garnich, M.R. (2012), "Effective ply and constituent elastic properties for cracked laminates", Compos.: Part B, 43(5), 2143-2151. crossref(new window)

3.
Amara, K.H., Tounsi, A., Megueni, A. and Addabedia, E.A. (2006), "Effect of transverse cracks on the mechanical properties of angle-ply composites laminates", Theor. Appl. Fract. Mech., 45(1), 72-78. crossref(new window)

4.
Amara, K.H., Bouazza, M., Antar, K. and Megueni, A. (2014), "Evaluation of the stiffness of composite materials with hygrothermal conditions", Leona. J. Sci., 25, 57-64.

5.
Barbero, E.J. and Cosso, F.A. (2014), "Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates", Compos. Part B, 56, 638-646. crossref(new window)

6.
Benkhedda, A., Tounsi, A. and Adda bedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stress during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. crossref(new window)

7.
Berthelot, J.M., Leblonb, P., El Mahi, A. and Le Core, J.F. (1996), "Transverse cracking of cross ply laminates: Part I. Analysis", Compos. Part A: Appl. Sci. Manuf., 27(10), 989-1001. crossref(new window)

8.
Bouazza, M., Tounsi, A., Benzair, A. and Adda-bedia, E.A. (2007), "Effect of transverse cracking on stiffness reduction of hygrothermal aged cross-ply laminates", Mater. Des., 28(0), 1116-1123. crossref(new window)

9.
Chamis, C.C. (1984), "Simplified composite micromechanics equations of hygral, thermal, and mechanical properties", SAMPE Quart, 15, 14-23.

10.
Farrokhabadi, A., Hosseini-Toudeshky, H. and Mohammadi, B. (2011), "A generalised micromechanical approach for the analysis of transverse crack induced delamination in composite laminates", Compos. Struct., 93(2), 443-455. crossref(new window)

11.
Hajikazemi, M. and Sadr, M.H. (2014), "Stiffness reduction of cracked general symmetric laminates using a variational approach", Inter. J. Sol. Struct., 51(7-8), 1483-1493. crossref(new window)

12.
Hallett, S.R., Jiang, W.G., Khan, B. and Wisnom, R. (2008), "Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens", Compos. Sci. Tech., 68(1), 80-89. crossref(new window)

13.
Halpin, J.C. and Tsai, S.W. (1968), "Effects of environmental factors on composite materials", Air Force Materials Lab (AFML-TR).

14.
Hashin, Z. (1985), "Analysis of cracked laminates: A variational approach", Mech. Mater., 4(2), 121-136. crossref(new window)

15.
Hashin, Z. (1986), "Analysis of stiffness reduction of cracked cross ply laminates", Eng. Frac. Mech., 25(5-6), 771-778. crossref(new window)

16.
Huang, Z.Q., Zhou, J.C. and Liew, K.M. (2014), "Variational analysis of angle-ply laminates with matrix cracks", Inter. J. Sol. Struct., 51(21-22), 3669-3678. crossref(new window)

17.
Jalalvand, M., Hosseini-Toudeshky, H. and Mohammadi, B. (2013), "Homogenization of diffuse delamination in composite laminates", Compos. Struct., 100, 113-120. crossref(new window)

18.
Joffe, R., Krasnikovs, A. and Varna, J. (2001), "COD-based simulation of transverse cracking and stiffness reduction in $[S/90_n]_s$ laminates", Compos. Sci. Tech., 61(5), 637-656. crossref(new window)

19.
Katerelos, D.T.G., Krasnikovs, A. and Varna, J. (2015), "Variational models for shear modulus of symmetric and balanced laminates with cracks in $90^{\circ}$-layer", Inter. J. Sol. Struct., 71, 169-179. crossref(new window)

20.
Kashtalyan, M. and Soutis, C. (2000), "Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting", Compos. Part A-App. Sci., 31(4), 335-351. crossref(new window)

21.
Khodjet-Kesba, M., Adda Bedia, E.A., Benkhedda, A. and Boukert, B. (2015), "Hygrothermal effect in $[{\theta}_m/90_n]_s$ cracked composite laminates-desorption case", Pro. Eng., 114, 110-117. crossref(new window)

22.
Li, S. and Hafeez, F. (2009), "Variation-based cracked laminate analysis revisited and fundamentally extended", Inter. J. Sol. Struct., 46(20), 3505-3515. crossref(new window)

23.
Li, S., Singh, C.V. and Talreja, R. (2009), "A representative volume element based on translational symmetries for FE analysis of cracked laminates with two arrays of cracks", Inter. J. Sol. Struct., 46(7-8), 1793-1804. crossref(new window)

24.
Lundmark, P. and Varna, J. (2011), "Stiffness reduction in laminates at high intralaminar crack density: Effect of crack interaction", Inter. J. Dam. Mech., 20(2), 279-297. crossref(new window)

25.
Maurice, F.A. (2001), "Engineering composite materials", EMC471; The Pennsylvania State University.

26.
McCartney, L.N. (1992), "Theory of stress transfer in a 0-90-0 cross ply laminate containing a parallel array of transverse cracks", J. Mech. Phys. Sol., 40(1), 27-68. crossref(new window)

27.
Nairn, J.A. and Mendels, D.A. (2001), "On the use of planar shear-lag methods for stress transfer analysis of multilayered composites", Mech. Mater., 33(6), 335-362. crossref(new window)

28.
Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda bedia, E.A. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mech. Indus., 12(5), 395-398.

29.
Selvarathinam, A.S. and Weitsman, Y.J. (1999), "A shear lag analysis of transverse cracking and delamination in cross-ply carbon fibre/epoxy composites under-dry, saturated and immersed fatigue conditions", Compos. Sci. Tech., 59(14), 2115-2123. crossref(new window)

30.
Shen, C.H. and Springer, G.S. (1981), "Moisture absorption and desorption of composite materials", (Environmental effects on composites materials Ed.), G.S. Springer, Technomic Publishing Co., Lancaster, PA, USA.

31.
Singh, C.V. and Talreja, R. (2009), "A synergistic damage mechanics approach for composite laminates with matrix cracks in multiple orientations", Mech. Mater., 41(8), 954-968. crossref(new window)

32.
Staab, G. (1999), Laminar Composite, Butterworth-Heinemann, London, UK.

33.
Steif, P.S. (1984), "Transverse play crack growth and associated stiffness reduction during the fatigue of a simple cross play laminate", Report CUED/C/MATS/TR105; Cambridge University.

34.
Tay, T.E. and Lim, E.H. (1996), "Analysis of composite laminates with transverse cracks", Compos. Struct., 34(4), 419-426. crossref(new window)

35.
Tounsi, A., Adda bedia, E.L. and Benachour, A. (2005), "A new computational method for prediction of transient hygroscopic stresses during moisture desorption in laminated composite plates with different degrees of anisotropy", Int. J. Thermo. Compos. Mater., 18(1), 37-58. crossref(new window)

36.
Tounsi, A., Amara, K.H., Benzair, A. and Megueni, A. (2006), "On the transverse cracking and stiffness degradation of aged angle-ply laminates", Mater. Lett., 60(21-22), 2561-2564. crossref(new window)

37.
Tsai, S.W. (1988), Composites Design, Think Composites, Dayton, Paris, Tokyo.

38.
Van der Meer, F.P and Sluys, L.J. (2013), "A numerical investigation of the size effect in the transverse crack tension test for mode II delamination", Compos. Part A: Appl. Sci. Manuf., 54, 145-152. crossref(new window)

39.
Vergnaud, J.M. (1992), Drying of Polymeric and Solid Materials: Modelling and Industrial Applications, Springer-Verlag, London, UK.

40.
Vingradov, V. and Hashin, Z. (2010), "Variational analysis of cracked angle-ply laminates", Compos. Sci. Tech., 70(4), 638-646. crossref(new window)

41.
Yokozeki, T. and Aoki, T. (2005), "Overall thermoelastic properties of symmetric laminates containing obliquely crossed matrix cracks", Compos. Sci. Tech., 65(11-12), 1647-1654. crossref(new window)

42.
Zhang, H. and Minnetyan, L. (2006), "Variational analysis of transverse cracking and local delamination in $[{\theta}_m/90_n]_s$ lamiantes", Int. J. Sol. Struct., 43(22-23), 7061-7081. crossref(new window)

43.
Zubillaga, L., Turon, A., Renart, J., Coasta, J. and Linde, P. (2015), "An experimental study on matrix crack induced delamination in composite laminates", Compos. Struct., 127, 10-17. crossref(new window)