JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Postbuckling analysis of laminated composite shells under shear loads
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Postbuckling analysis of laminated composite shells under shear loads
Jung, Woo-Young; Han, Sung-Cheon; Lee, Won-Hong; Park, Weon-Tae;
 Abstract
The postbuckling behavior of laminated composite plates and shells, subjected to various shear loadings, is presented, using a modified 8-ANS method. The finite element, based on a modified first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the various location and number of enhanced membrane and shear interpolation. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. The effects of various types of lay-ups, materials and number of layers on initial buckling and postbuckling response of the laminated composite plates and shells for various shear loading have been discussed. In addition, the effect of direction of shear load on the postbuckling behavior is studied. Numerical results and comparisons of the present results with those found in the literature for typical benchmark problems involving symmetric cross-ply laminated composites are found to be excellent and show the validity of the developed finite element model. The study is relevant to the simulation of barrels, pipes, wing surfaces, aircrafts, rockets and missile structures subjected to intense complex loading.
 Keywords
laminated composite shells;postbuckling analysis;assumed natural strain;shear loads;
 Language
English
 Cited by
1.
Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method,;;;

Steel and Composite Structures, 2016. vol.22. 2, pp.301-321 crossref(new window)
1.
Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method, Steel and Composite Structures, 2016, 22, 2, 301  crossref(new windwow)
 References
1.
Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. crossref(new window)

2.
Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. crossref(new window)

3.
Bachir Bouiadjr, R., Bedia, E.A.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., Int. J., 48, 547-567. crossref(new window)

4.
Balamurugan, V., Ganapathi, M. and Patel, B.P. (1998), "Postbuckling behavior of anisotropic laminated composite plates due to shear loading", Defense Sci. J., 48(4), 433-440. crossref(new window)

5.
Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-The use of mixed interpolation of tensorial components", Int. J. Numer. Method. Eng., 22(3), 697-722. crossref(new window)

6.
Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81(8-11), 477-489. crossref(new window)

7.
Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. crossref(new window)

8.
Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. crossref(new window)

9.
Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. j., 14(1), 85-104. crossref(new window)

10.
Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. crossref(new window)

11.
Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Method., 11(6), 1350082. crossref(new window)

12.
Bucalem, M.L. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Method. Eng., 36(21), 3729-3754. crossref(new window)

13.
Chaiomphob, T., Kanok-Nukulchai, W. and Nishino, F. (1998), "An automatic arc-length control algorithm for tracing equilibrium paths of nonlinear structures", Struct. Eng. Earthq. Eng., JSCE, 5(1), 205-208.

14.
Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. crossref(new window)

15.
Gupta, A.K., Patel, B.P. and Nath, Y. (2014), "Postbuckling response of composite laminated plates with evolving damage", Int. J. Damage Mech., 23, 222-244. crossref(new window)

16.
Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. crossref(new window)

17.
Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004), "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Struct. Eng. Mech., Int. J., 18(6), 807-829. crossref(new window)

18.
Han, S.C., Kanok-Nukulchai, W. and Park, W.T. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., Int. J., 40(2), 191-213. crossref(new window)

19.
Han, S.C., Park, W.T. and Jung, W.Y. (2015), "A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface", Compos. Struct., 131, 1081-1089. crossref(new window)

20.
Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140, 374-383. crossref(new window)

21.
Huang, H.C. (1989), Static and Dynamic Analysis of Plates and Shells, Springer-Verlag, London, UK.

22.
Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Numer. Method Eng., 22(1), 73-92. crossref(new window)

23.
Jones, R.M. (1973), "Buckling and vibration of unsymmetrically laminated cross-ply rectangular plates", AIAA, 11, 1626-1632. crossref(new window)

24.
Jung, W.Y. and Han, S.C. (2013), "An 8-node shell element for non-linear analysis of shells using the refined combination of membrane and shear interpolation functions", Math. Problem. Eng., 2013, 1-16.

25.
Jung, W.Y. and Han, S.C. (2014), "Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element", Compos. Struct., 109, 119-129. crossref(new window)

26.
Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Method Eng., 14(2), 179-200. crossref(new window)

27.
Kanok-Nukulchai, W., Taylor, R.L. and Hughes, T.J.R. (1981), "A large deformation formulation for shell analysis by finite element method", Comput. Struct., 13(1-3), 19-27. crossref(new window)

28.
Kim, K.D. and Park, T.H. (2002), "An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells", Struct. Eng. Mech., Int. J., 13(4), 1-18. crossref(new window)

29.
Kim, K.D., Lomboy, G.R. and Han, S.C. (2003), "A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells", Computat. Mech., 30(4), 330-342. crossref(new window)

30.
Kosteletos, S. (1992), "Shear buckling response of laminated plates", Compos. Struct., 20, 147-154. crossref(new window)

31.
Kudva, N.J. (1979), "Postbuckling studies of curved laminated composite panels", Ph.D. Thesis; Virginia Polytechnic Institute and State University, VA, USA.

32.
Kumar, D. and Singh, S.B. (2010), "Postbuckling strengths of composite laminate with various shaped cutouts under in-plane shear", Compos. Struct., 92(12), 2966-2978. crossref(new window)

33.
Lakshminarayana, H.V. and Kailash, K. (1989), "A shear deformable curved shell element of quadrilateral shape", Comput. Struct., 33(4), 987-1001. crossref(new window)

34.
Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for largedeformation analysis of laminated shells", Int. J. Numer. Method Eng., 42(5), 777-798. crossref(new window)

35.
Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", Proceedings of the Second East Asia-Pacific Conference on Structural Engineering and Construction, Chiang Mai, Thailand, January.

36.
MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. Des., 1(1), 3-20. crossref(new window)

37.
MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Numer. Method. Eng., 33(5), 1049-1058. crossref(new window)

38.
Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. crossref(new window)

39.
Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., ASME, 51, 745-752. crossref(new window)

40.
Tanov, R. and Tabiei, A. (2000), "Simple correction to the first-order shear deformation shell finite element formulations", Finite Elem. Anal. Des., 35, 189-197. crossref(new window)

41.
Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. crossref(new window)

42.
Vinson, J.R. and Chou, T.W. (1975), Composite Materials and their Use in Structures, Applied Science Publishers Ltd., London, UK.

43.
Whitney, J.M. (1969a), "Bending-extensional coupling in laminated plates under transverse loading", J. Compos. Mater., 3, 20-28. crossref(new window)

44.
Whitney, J.M. (1969b), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3, 534-547. crossref(new window)

45.
Wilkins, D.J. and Olson, F. (1974), "Shear buckling of advanced composite curved panels", J. Experim. Mech., 14(8), 326-330.

46.
Zhang, Y. and Matthews, F.L. (1983a), "Initial buckling of curved panels of generally layered composite materials", Compos. Struct., 1, 3-30. crossref(new window)

47.
Zhang, Y. and Matthews, F.L. (1983b), "Postbuckling behaviour of curved panels of generally layered composite materials", Compos. Struct., 1, 115-135. crossref(new window)

48.
Zhang, Y. and Matthews, F.L. (1985), "Large deflection behavior of simply supported laminated panels under in-plane loading", J. Appl. Mech., ASME, 52(3), 553-558. crossref(new window)

49.
Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. crossref(new window)

50.
Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Butterworth-Heinemann, London, UK.