JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Structural response of composite concrete filled plastic tubes in compression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Structural response of composite concrete filled plastic tubes in compression
Oyawa, Walter O.; Gathimba, Naftary K.; Mang`uriu, Geoffrey N.;
 Abstract
Kenya has recently experienced worrying collapse of buildings during construction largely attributable to the poor quality of in-situ concrete and poor workmanship. The situation in the country is further compounded by rapid deterioration of infrastructure, hence necessitating the development of alternative structural systems such as concrete filled unplasticized poly vinyl chloride (UPVC) tubes as columns. The work herein adds on to the very limited and scanty work on use of UPVC tubes in construction. This study presents the findings of experimental and analytical work which investigated the structural response of composite concrete filled UPVC tubes under compressive load regime. UPVC pipes are cheaper than steel tubes and can be used as formwork during construction and thereafter as an integral part of column. Key variables in this study included the strength of infill concrete, the length to diameter ratio (L/D) of the plastic tube, as well as the diameter to thickness ratio (D/2t) of the plastic tube. Plastic tubes having varying diameters and heights were used to confine concrete of different strengths. Results obtained in the study clearly demonstrate the effectiveness of UPVC tubes as a confining medium for infill concrete, attributable to enhanced composite interaction between the UPVC tube and infill concrete medium. It was determined that compressive strength of the composite column specimens increased with increased concrete strength while the same decreased with increased column height, albeit by a small margin since all the columns considered were short columns. Most importantly, the experimental confined concrete strength increased significantly when compared to unconfined concrete strength; the strength increased between 1.18 to 3.65 times the unconfined strength. It was noted that lower strength infill concrete had the highest confined strength possibly due to enhanced composite interaction with the confining UPVC tube. The study further proposes an analytical model for the determination of confined strength of concrete.
 Keywords
composite structures;compressive loads;concrete filled plastics;plastics;stub columns;
 Language
English
 Cited by
1.
Influence of Constituent Materials Properties on the Compressive Strength of in Situ Concrete in Kenya, Open Journal of Civil Engineering, 2017, 07, 01, 63  crossref(new windwow)
 References
1.
Architectural Institute of Japan (AIJ) (1997), Recommendations for design and construction of concrete filled steel tubular structures, Tokyo, Japan.

2.
Chen, S. and Zhang, H. (2012), "Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface", Steel Compos. Struct., Int. J., 13(3), 277-293. crossref(new window)

3.
Cusson, D. and Paultre, P. (1995), "Stress-strain model for confined high-strength concrete", J. Str. Engrg., ASCE, 121(3), 468-477. crossref(new window)

4.
Gardner, N.J. and Jacobson, E.R. (1967), "Structural behaviour of concrete-filled steel tubes", ACI J., 64(11), 404-413.

5.
Gupta, P.K. (2013), "Confinement of concrete columns with Unplasticized Poly-vinyl chloride tubes", Int. J. Adva. Struct. Eng., 5(1), 1-8. http://www.advancedstructeng.com/content/5/1/19 crossref(new window)

6.
Gupta, P.K. and Singh, H. (2014), "Numerical study of confinement in short concrete filled steel tube columns", Lat. Am. J. Solids Struct., 11(8), 1445-1462. http://dx.doi.org/10.1590/S1679-78252014000800010 crossref(new window)

7.
Imani, R., Mosqueda, G. and Bruneau, M. (2015), "Finite element simulation of concrete-filled double-skin tube columns subjected to post-earthquake fires", J. Struct. Eng., 141(12), 1-15.

8.
Kamyar, B., Emad, H. and Seyed, H.H. (2015), "Evaluation of rectangular concrete-filled steel-hollow section beam-columns", J. Asian Sci. Res., 5(1), 46-59.

9.
Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Str. Engrg., ASCE, 114(8), 18041826.

10.
Marzouck, M. and Sennah, K. (2002), "Concrete-filled PVC tubes as compression members: Composite materials in concrete construction", Proceedings of the International Congress "Challenges of Concrete Construction", Scotland, UK, September, pp. 31-38.

11.
Mohammadreza, M. and Sanjay, R.A. (2014), "Improving buckling response of the square steel tube by using steel foam", Struct. Eng. Mech., Int. J., 51(6), 1017-1036. crossref(new window)

12.
Newman, K. and Newman, J.B. (1969), "Failure theories and design criteria for plain concrete", Proceedings of the International Civil Engineering Materials Conference on Structure, Solid Mechanics and Engineering Design, Southampton, UK, April, pp. 936-995.

13.
Oliveira, W., Nardin, S., Debs, A. and Debs, M. (2009), "Influence of concrete strength andlength/diameter on the axial capacity of CFT columns", J. Construct. Steel Res., 65(12), 2103-2110. crossref(new window)

14.
Oyawa, W.O., Sugiura, K. and Watanabe, E. (2001), "Polymer-concrete-filled steel tubes under axial compression", J. Construct. Build. Mater., 15(4), 187-197. crossref(new window)

15.
Patel, V., Liang, Q. and Hadi, M. (2014), "Numerical analysis of high-strength concrete-filled steel tubular slender beam-columns under cyclic loading", J. Construct. Steel Res., 92, 183-194. crossref(new window)

16.
Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", Eng. Experim. Station Bull., No. 185; University of Illinois, Urbana III, IL, USA.

17.
Saatcioglu, M. and Razvi, S.R. (1992), "Strength and ductility of confined concrete", J. Struct. Eng., ASCE, 118(6), 1590-1607. crossref(new window)

18.
Schneider, S.P. (1998), "Axially loaded concrete filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. crossref(new window)

19.
Soliman, A.E.S. (2011), "Behavior of long confined concrete column", Ain Shams Eng. J., 2(3-4), 141-148. crossref(new window)

20.
Tao, Z., Wang, Z. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Construct. Steel Res., 89, 121-131. crossref(new window)

21.
Tiziano, P., Roberto, T.L., Jerome, F.H. and Mark, D.D. (2014), "Full-scale tests of slender concrete-filled tubes: Interaction behavior", J. Struct. Eng., 140(9), 04014054. crossref(new window)

22.
Usha, C.M. and Eramma, H. (2014), "Experimental study on concrete filled, unplasticised poly vinyl chloride (UPVC) tubes", Int. J. Adv. Technol. Eng. Sci., 2(7), 331-338.

23.
Vinay, G., Raju, J., Adil Dar, M. and Manzoor, S.B. (2015), "A study on composite steel tubes", SSRG Int. J. Civil Eng. (SSRG-IJCE), 107-112.

24.
Wang, J. and Yang, Q. (2010), "Experimental study on mechanical properties of concrete confined with plastic pipe", ACI Mater. J., 107, 132-137.

25.
Woraphot, P., Sitthichai, P., Athawit, S. and Suchart, L. (2015), "Behavior and performance of GFRP reinforced concrete columns with various types of stirrups", Int. J. Polym. Sci., 2015, 9 p. http://dx.doi.org/10.1155/2015/237231 crossref(new window)

26.
Yiyan, L., Na, L. and Shan, L. (2014), "Behavior of FRP-confined concrete-filled steel tube columns", Polymers, 6(5), 1333-1349. DOI: 10.3390/polym6051333 crossref(new window)