JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Energy absorption characteristics of diamond core columns under axial crushing loads
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Energy absorption characteristics of diamond core columns under axial crushing loads
Azad, Nader Vahdat; Ebrahimi, Saeed;
 Abstract
The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.
 Keywords
diamond core;honeycomb columns;optimization;sensitivity analysis;crashworthiness;energy absorption;response surface method;
 Language
English
 Cited by
1.
Crashworthiness efficiency optimisation for two-directional functionally graded foam-filled tubes under axial crushing impacts, International Journal of Crashworthiness, 2017, 22, 3, 307  crossref(new windwow)
 References
1.
Abramowicz, W. and Jones, N. (1984a), "Dynamic axial crushing of square tubes", Int. J. Impact Eng., 2(2), 179-208. crossref(new window)

2.
Abramowicz, W. and Jones, N. (1984b), "Dynamic axial crushing of circular tubes", Int. J. Impact Eng., 2(3), 263-281. crossref(new window)

3.
Acar, E., Guler, M.A., Gerceker, B., Cerit, M.E. and Bayram, B. (2011), "Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations", Thin-Wall. Struct., 49(1), 94-105. crossref(new window)

4.
Athan, T.W. and Papalambros, P.Y. (1999), "A note on weighted criteria methods for compromise solutions in multi-objective optimization", Eng. Optim., 27(2), 155-176.

5.
Avalle, M., Chiandussi, G. and Belingardi, G. (2002), "Design optimization by response surface methodology: application to crashworthiness design of vehicle structures", Struct. Multidiscip. Optim., 24(4), 325-332. crossref(new window)

6.
Chen, M.F. and Tzeng, G.H. (2004), "Combining grey relation and TOPSIS concepts for selecting an expatriate host country", Math. Comput. Model, 40(13), 1473-1490. crossref(new window)

7.
Chiandussi, G. and Avalle, M. (2002), "Maximization of the crushing performance of a tubular device by shape optimization", Comput. Struct., 80(27-30), 2425-2432. crossref(new window)

8.
Deng, H., Yeh, C.H. and Willis, R.J. (2000), "Inter-company comparison using modified TOPSIS with objective weights", Comput. Operat. Res., 27(10), 963-973. crossref(new window)

9.
Ebrahimi, S. and Vahdatazad, N. (2015), "Multi-objective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads", Thin-Wall. Struct., 88, 90-104. crossref(new window)

10.
Fang, H., Rais-Rohani, M., Liu, Z. and Horstemeyer, M.F. (2005), "A comparative study of metamodeling methods for multi-objective crashworthiness optimization", Comput. Struct., 83(25-26), 2121-2136. crossref(new window)

11.
Fang, J., Gao, Y., Sun, G., Xu, C. and Li, Q. (2015), "Multi objective robust design optimization of fatigue life for a truck cab", Reliab. Eng. Syst. Safe., 135, 1-8. crossref(new window)

12.
Forsberg, J. and Nilsson, L. (2005), "On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness", Struct. Multidiscip. Optim., 29(3), 232-243. crossref(new window)

13.
Forsberg, J. and Nilsson, L. (2006), "Evaluation of response surface methodologies used in crashworthiness optimization", Int. J. Impact Eng., 32(5), 759-777. crossref(new window)

14.
Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2007), "Design optimization of regular hexagonal thin walled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43(6-7), 555-565. crossref(new window)

15.
Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2008), "Multi-objective optimization of multi-cell sections for the crashworthiness design", Int. J. Impact Eng., 35(11), 1355-1367. crossref(new window)

16.
Hou, S., Li, Q., Long, S., Yang, X. and Li, W. (2009), "Crashworthiness design for foam filled thin-wall structures", Mater. Des., 30(6), 2024-2032. crossref(new window)

17.
Hwang, C.L. and Yoon, K. (1981), Multiple Attribute Decision Making: Methods and Applications, Berlin/Heidelberg/New York, Springer-Verlag.

18.
Jansson, T., Nilsson, L. and Redhe, M. (2003), "Using surrogate models and response surface in structural optimization with application to crashworthiness design and sheet metal forming", Struct Multidiscip. Optim., 25(2), 129-140. crossref(new window)

19.
Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the IEEE International Joint Conference on Neural Networks, Piscataway, NJ, USA, November-December, pp. 1942-1948.

20.
Kim, H.S. (2002), "New extruded multi cell aluminum profile for maximum crush energy absorption and weight efficiency", Thin-Wall. Struct., 40(4), 311-327. crossref(new window)

21.
Kodiyalam, S., Yang, R.J., Gu, L. and Tho, C.H. (2004), "Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment", Struct. Multidiscip. Optim., 26(3), 256-263. crossref(new window)

22.
Lanzi, L., Castelletti, M.L. and Anghileri, M. (2004), "Multi-objective optimization of composite absorber shape under crashworthiness requirements", Compos. Struct., 65(3-4), 433-441. crossref(new window)

23.
Lee, T.H. and Lee, K. (2005), "Multi-criteria shape optimization of a funnel in cathode ray tubes using a response surface model", Struct. Multidiscip. Optim., 29(5), 374-381. crossref(new window)

24.
Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Process. Technol., 130-131, 490-496. crossref(new window)

25.
Li, M., Deng, Z., Guo, H., Liu, R. and Ding, B. (2014), "Optimizing crashworthiness design of square honeycomb structure", J. Cent. South Univ., 21(3), 912-919. crossref(new window)

26.
Liao, X.T., Li, Q., Yang, X.J., Zhang, W.G. and Li, W. (2007), "Multiobjective optimization for crash safety design of vehicles using stepwise regression model", Struct. Multidiscip. Optim, 35(6), 561-569. DOI: 10.1007/s00158-007-0163-x crossref(new window)

27.
Lin, C.T., Chang, C.W. and Chen, C.B. (2006), "The worst ill-conditioned silicon wafer slicing machine detected by using Grey relational analysis", Int. J. Adv. Manuf. Technol., 31(3), 388-395. crossref(new window)

28.
Lu, G. and Yu, T. (2003), Energy Absorption of Structures and Materials, Wood Head Publishing Ltd., Cambridge, England.

29.
Myers, R.H. and Montgomery, D.C. (2002), Response Surface Methodology, Wiley, New York, NY, USA.

30.
Oktem, H., Erzurumlu, T. and Kurtaran, H. (2005), "Application of response surface methodology in the optimization of cutting conditions for surface roughness", J. Mater. Process. Technol., 170(1-2), 11-16. crossref(new window)

31.
Saltelli, A., Ratto, M., Tarantola, S. and Campolongo, F. (2006), "Sensitivity analysis practices: Strategies for model-based inference", Reliab. Eng. Syst. Safe., 91(10-11), 1109-1125. crossref(new window)

32.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, S. (2008), Global Sensitivity Analysis, The Primer, John Wiley & Sons.

33.
Sinha, K. (2007), "Reliability-based multi-objective optimization for automotive crashworthiness and occupant safety", Struct. Multidiscip. Optim., 33(3), 255-268. crossref(new window)

34.
Sun, G., Li, G., Stone, M. and Li, Q. (2010a), "A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials", Compos. Mater. Sci., 49(3), 500-511. crossref(new window)

35.
Sun, G., Li, G., Hou, S., Zhou, S., Li, W. and Li, Q. (2010b), "Crashworthiness design for functionally graded foam-filled thin-walled structures", Mater. Sci. Eng. A-Struct., 527(7-8), 1911-1919. crossref(new window)

36.
Sun, G., Song, X., Baek, S. and Li, Q. (2014), "Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel", Struct. Multidiscip. Optim., 49(6), 897-913 crossref(new window)

37.
Wang, G.G. and Shan, S. (2007), "Review of metamodeling techniques in support of engineering design optimization", J. Mech. Des., 129(4), 370-380. crossref(new window)

38.
Wierzbicki, T. (1998), "Crash behavior of box columns filled with aluminum honeycomb or foam", Compos. Struct., 68(4), 343-367. crossref(new window)

39.
Xiang, Y.J., Wang, Q., Fan, Z.J. and Fang, H.B. (2006), "Optimal crashworthiness design of a spot-welded thin-walled hat section", Finite Elem. Anal. Des., 42(10), 846-855. crossref(new window)

40.
Yang, R.J., Wang, N., Tho, C.H., Bobineau, J.P. and Wang, B.P. (2005), "Metamodeling development for vehicle frontal impact simulation", J. Mech. Des., 127(5), 1014-1020. crossref(new window)

41.
Yin, H., Wen, G., Hou, S. and Chen, K. (2011), "Crushing analysis and multi-objective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes", Mater. Des., 32, 4449-4460. crossref(new window)

42.
Yin, H., Wen, G., Liu, Z. and Qing, Q. (2014), "Crashworthiness optimization design for foam-filled multi-cell thin-walled structures", Thin-Wall. Struct., 75, 8-17. crossref(new window)

43.
Zarei, H.R. and Kroger, M. (2006), "Multi-objective crashworthiness optimization of circular aluminum tubes", Thin-Wall. Struct., 44(3), 301-308. crossref(new window)

44.
Zarei, H.R. and Kroger, M. (2007), "Optimum honeycomb filled crash absorber design", Mater. Des., 29(1), 193-204.

45.
Zhang, Z., Liu, S. and Tang, Z. (2010), "Crushworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads", Thin-Wall. Struct., 48(1), 9-18. crossref(new window)

46.
Zhang, Z., Liu, S. and Tang, Z. (2011), "Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads", Thin-Wall. Struct., 49(9), 1071-1079. crossref(new window)