JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Smart Structures and Systems
  • Volume 17, Issue 2,  2016, pp.209-230
  • Publisher : Techno-Press
  • DOI : 10.12989/sss.2016.17.2.209
 Title & Authors
Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method
Zhang, Feng-Liang; Ni, Yi-Qing; Ni, Yan-Chun; Wang, You-Wu;
 Abstract
The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.
 Keywords
supertall structure;ambient vibration;modal identification;Bayesian method;uncertainty;
 Language
English
 Cited by
1.
Mode identifiability of a cable-stayed bridge based on a Bayesian method,;;;

Smart Structures and Systems, 2016. vol.17. 3, pp.471-489 crossref(new window)
1.
Operational modal identification of a boat-shaped building by a Bayesian approach, Engineering Structures, 2017, 138, 381  crossref(new windwow)
2.
Mode identifiability of a cable-stayed bridge based on a Bayesian method, Smart Structures and Systems, 2016, 17, 3, 471  crossref(new windwow)
3.
Operational modal identification and finite element model updating of a coupled building following Bayesian approach, Structural Control and Health Monitoring, 2018, 25, 2, e2089  crossref(new windwow)
4.
Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection, Structural Control and Health Monitoring, 2018, e2140  crossref(new windwow)
5.
Bayesian structural model updating using ambient vibration data collected by multiple setups, Structural Control and Health Monitoring, 2017, 24, 12, e2023  crossref(new windwow)
6.
Evaluation of the dynamic characteristics of a super tall building using data from ambient vibration and shake table tests by a Bayesian approach, Structural Control and Health Monitoring, 2017, e2121  crossref(new windwow)
7.
Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach, Mechanical Systems and Signal Processing, 2017, 86, 286  crossref(new windwow)
 References
1.
Au, S.K. (2011), "Fast Bayesian FFT method for ambient modal identification with separated modes", J. Eng. Mech.-ASCE, 137, 214-226. crossref(new window)

2.
Au, S.K. (2012a), "Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value", Mech. Syst. Signal Pr., 26, 60-75. crossref(new window)

3.
Au, S.K. (2012b), "Fast Bayesian ambient modal identification in the frequency domain, Part II: posterior uncertainty", Mech. Syst. Signal Pr., 26, 76-90. crossref(new window)

4.
Au, S.K. (2012c), "Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification", Mech. Syst. Signal Pr., 29, 328-342. crossref(new window)

5.
Au S.K. and Zhang F.L. (2012a), "Fast Bayesian ambient modal identification incorporating multiple setups", J. Eng.Mech.-ASCE, 138(7), 800-815. crossref(new window)

6.
Au, S.K. and Zhang, F.L. (2012b), "Ambient modal identification of a primary-secondary structure by Fast Bayesian FFT method", Mech. Syst. Signal Pr., 28, 280-296. crossref(new window)

7.
Au, S.K. and Zhang, F.L. (2016), "Fundamental two-stage formulation for Bayesian system identification, Part I: General theory", Mech. Syst. Signal Pr., 66-67, 31-42. crossref(new window)

8.
Au, S.K., Ni, Y.C., Zhang, F.L. and Lam, H.F. (2012a), "Full scale dynamic testing of a coupled slab system", Eng. Struct., 37, 167-178. crossref(new window)

9.
Au, S.K., Zhang, F.L. and To, P. (2012b), "Field observations on modal properties of two tall buildings under strong wind", J. Wind Eng. Ind. Aerod., 101, 12-23. crossref(new window)

10.
Au, S.K., Zhang, F.L. and Ni, Y.C. (2013), "Bayesian operational modal analysis: theory, computation, practice", Comput. Struct., 126, 3-15. crossref(new window)

11.
Brincker, R., Zhang, L. and Anderson, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10, 441-455. crossref(new window)

12.
Brownjohn, J.M.W. and Pan, T.C. (2008), "Identifying loading and response mechanisms from ten years of performance monitoring of a tall building", J. Perform. Constr. Fac., 22(1), 24-34. crossref(new window)

13.
Brownjohn, J.M.W., Moyo, P., Omenzetter, P. and Chakraborty, S. (2005), "Lessons from monitoring the performance of highway bridge", Struct. Control Health Monit., 12, 227-244. crossref(new window)

14.
Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Health monitoring of civil infrastructure", Struct. Health Monit., 2(3), 257-267. crossref(new window)

15.
Chen, H.P., Tee, K.F. and Ni, Y.Q. (2012), "Mode shape expansion with consideration of analytical modelling errors and modal measurement uncertainty", Smart Struct. Syst., 10(4-5), 485-499. crossref(new window)

16.
Chen, H.P. and Huang, T.L. (2012), "Updating finite element model using dynamic perturbation method and regularization algorithm", Smart Struct. Syst., 10(4-5), 427-442. crossref(new window)

17.
Chen, W.H., Lu, Z.R., Lin, W., Chen, S.H., Ni, Y.Q., Xia, Y. and Liao W.Y. (2011), "Theoretical and experimental modal analysis of the Guangzhou New TV Tower", Eng. Struct., 33, 3628-3646. crossref(new window)

18.
Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. D., 30, 1103-1123. crossref(new window)

19.
Kijewski-Correa, T., Kwon D.K., Kareem A., Bentz A., Guo Y., Bobby A. and Abdelrazaq, A. (2013), "SmartSync: An integrated real-time structural health monitoring and structural identification system for tall buildings", J. Struct. Eng.-ASCE, 139(10), 1675-1687. crossref(new window)

20.
Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. crossref(new window)

21.
Kuok, S.C. and Yuen, K.V. (2012), "Structural health monitoring of Canton tower using Bayesian framework", Smart Struct. Syst., 10(4-5), 375-391. crossref(new window)

22.
Lam, H.F., Peng, H.Y. and Au, S.K. (2014), "Development of a practical algorithm for Bayesian model updating of a coupled slab system utilizing field test data", Eng. Struct., 79, 182-194. crossref(new window)

23.
Lei, Y., Wang, H.F. and Shen, W.A. (2012), "Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data", Smart Struct. Syst., 10(4-5), 471-483. crossref(new window)

24.
Li, Q.S. and Yi, J. (2015), "Monitoring of dynamic behaviour of super-tall buildings during typhoons", Struct. Infrastruct. E., DOI: 10.1080/15732479.2015.1010223. crossref(new window)

25.
Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C. and Wu, C.F. (2011), "Dynamic behavior of Taipei 101 Tower: Field measurement and numerical analysis", J. Struct. Eng.-ASCE, 137(1), 143-155. crossref(new window)

26.
Mu, H.Q. and Yuen, K.V. (2015), "Novel outlier-resistant extended Kalman filter for robust online structural identification", J. Eng. Mech.-ASCE, 141(1), CID: 04014100.

27.
Ni, Y.Q., Wong, K.Y. and Xia Y. (2011). "Health checks through landmark bridges to sky-high structures", Adv. Struct. Eng., 14(1), 103-119. crossref(new window)

28.
Ni, Y.Q., Xia, Y., Lin, W., Chen, W.H. and Ko, J.M. (2012), "SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data", Smart Struct. Syst., 10(4), 411-426. crossref(new window)

29.
Ni, Y.Q., Xia, Y., Liao, W.X. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower", Struct. Control Health Monit., 16(1), 73-98. crossref(new window)

30.
Ni, Y.Q., Zhang, F.L., Xia, Y.X. and Au, S.K. (2015), "Operational modal analysis of a long-span suspension bridge under different earthquake events", Earthq. Struct., 8(4), 859-887. crossref(new window)

31.
Niu Y., Kraemer P. and Fritzen C.P. (2012), "Operational modal analysis for Canton Tower", Smart Struct. Syst., 10(4-5), 393-410. crossref(new window)

32.
Pei, H.F., Cui, P., Yin, J.H, Zhu, H.H., Chen, X.Q., Pei, L.Z. and Xu, D.S. (2011). "Monitoring and warning of landslides and debris flows using an optical fiber sensor technology", J. Mountain Sci., 8(5), 728-738. crossref(new window)

33.
Pei, H.F., Yin, J.H., Zhu, H.H, Hong, C.Y., Jin, W. and Xu, D.S. (2012), "Monitoring of lateral displacements of a slope using a series of special fibre Bragg grating-based in-place inclinometers", Measurement Sci. Technol., 23(2), 1-8.

34.
Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: a review". Journal of Dynamic Systems", Measurement Control, ASME, 123(4), 659-667. crossref(new window)

35.
Schoukens, J. and Pintelon, R. (1991), Identification of Linear Systems: A Practical Guideline for Accurate Modelling, London: Pergamon Press.

36.
Shi, W.X., Shan J.Z. and Lu, X.L. (2012), "Modal identification of Shanghai World Financial Center both from free and ambient vibration response", Eng. Struct., 36, 14-26 crossref(new window)

37.
Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler B.R. (2003), A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS.

38.
Su, J.Z., Xia, Y., Chen, L., Zhao, X., Zhang, Q.L., Xu, Y.L., Ding, J.M., Xiong, H.B. and Ma, R.J. (2013), "Long-term structural performance monitoring system for the Shanghai Tower", J. Civil Struct. Health Monit., 3, 49-61. crossref(new window)

39.
Yuen, K.V. (2010), Bayesian methods for structural dynamics and civil engineering, Wiley, New York.

40.
Yuen, K.V. and Mu, H.Q. (2012), "A novel probabilistic method for robust parametric identification and outlier detection", Probabilist. Eng. Mech., 30, 48-59. crossref(new window)

41.
Yuen, K.V. and Katafygiotis, L.S. (2001), "Bayesian time-domain approach for modal updating using ambient data", Probabilist. Eng. Mech., 16(3), 219-231. crossref(new window)

42.
Yuen, K.V. and Katafygiotis, L.S. (2003), "Bayesian fast fourier transform approach for modal updating using ambient data", Adv. Struct. Eng., 6(2), 81-95. crossref(new window)

43.
Yuen, K.V. and Katafygiotis, L.S. (2005), "Model updating using response measurements without knowledge of the input spectrum", Earthq. Eng. Struct. D., 34(2), 167-187. crossref(new window)

44.
Yuen, K.V. and Kuok, S.C. (2010), "Ambient interference in long-term monitoring of buildings", Eng. Struct., 32, 2379-2386. crossref(new window)

45.
Zhang, F.L. and Au, S.K. (2013), "Erratum for fast Bayesian FFT method for ambient modal identification with separated modes by Siu-Kui Au", J. Eng. Mech.-ASCE, 139, 545-545. crossref(new window)

46.
Zhang, F.L. and Au, S.K. (2015), "A probabilistic model for modal properties based on operational modal analysis", ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, http://dx.doi.org/10.1061/AJRUA6.0000843.B4015005..

47.
Zhang, F.L. and Au, S.K. (2016), "Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data", Mech. Syst. Signal Pr., 66-67, 43-61. crossref(new window)