JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Smart Structures and Systems
  • Volume 17, Issue 5,  2016, pp.725-742
  • Publisher : Techno-Press
  • DOI : 10.12989/sss.2016.17.5.725
 Title & Authors
A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method
Fesharaki, Javad Jafari; Golabi, Sa`id;
 Abstract
This paper is focused on stiffness ratio effect and a new method to specify the best pattern of piezoelectric patches placement around a hole in a plate under tension to reduce the stress concentration factor. To investigate the stiffness ratio effect, some different values greater and less than unity are considered. Then a python code is developed by using particle swarm optimization algorithm to specify the best locations of piezoelectric actuators around the hole for each stiffness ratio. The results show that, there is a line called "reference line" for each plate with a hole under tension, which can guide the location of actuator patches in plate to have the maximum stress concentration reduction. The reference line also specifies that actuators should be located horizontally or vertically. This reference line is located at an angle of about 65 degrees from the stress line in plate. Finally two experimental tests for two different locations of the patches with various voltages are carried out for validation of the results.
 Keywords
reference line;pattern recognition;piezoelectric actuator;stress concentration;plate under tension;
 Language
English
 Cited by
1.
Estimation of Stress Concentration Factor of Plate with Hole using Piezoelectric Actuator and Finite Element Method, IOP Conference Series: Materials Science and Engineering, 2017, 184, 012064  crossref(new windwow)
 References
1.
Adali, S. Sadek, I.S., Bruch Jr., J.C., Sloss, J.M. and Cagdas, I.U., (2006), "Deflection control of elastically restrained laminated frames under deterministic and uncertain loads using induced strain actuators", Compos. Struct., 76(1-2), 2-13. crossref(new window)

2.
Amezquita-Sanchez, J.P., Dominguez-Gonzalez, A., Sedaghati, R., Romero-Troncoso, R.d.J. and Osornio-Rios, R.A. (2014), "Vibration control on smart civil structures: A review", Mech. Adv. Mater. Str., 21(1), 23-28. crossref(new window)

3.
Chee, C.Y.K., Tong, L. and Steven, G.P. (2002), "Static shape control of composite plates using a slope-displacement-based algorithm", AIAA J., 40(8), 1611-1618. crossref(new window)

4.
Franco Correia, V.M., Mota Soares, C.M. and Mota Soares, C.A. (2003), "Buckling optimization of composite laminated adaptive structures", Compos. Struct., 62(3-4), 315-321. crossref(new window)

5.
Frecker, M.I. (2003), "Recent advances in optimization of smart structures and actuators", J. Intel. Mat. Syst. Str., 14(4-5), 207-216. crossref(new window)

6.
Gandhi, M.V. and Thompson, B.S. (1992), Smart Materials and Structures, Chapman & Hall, London.

7.
Gupta, V., Sharma, M. and Thakur, N. (2010), "Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review", J. Intel. Mat. Syst. Str., 21(12), 1227-1243. crossref(new window)

8.
Jafari Fesharaki, J. and Golabi, S. (2014), "Optimum pattern of piezoelectric actuator placement for stress concentration reduction in a plate with a hole using particle swarm optimization algorithm", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 1-15.

9.
Kang, Z. and Tong, L. (2008), "Topology optimization-based distribution design of actuation voltage in static shape control of plates", Comput. Struct., 86(19-20), 1885-1893. crossref(new window)

10.
Kang, Z., Wang, X. and Luo, Z. (2012), "Topology optimization for static shape control of piezoelectric plates with penalization on intermediate actuation voltage", J. Mech. Design, 134(5), 051006. crossref(new window)

11.
Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the 1995 IEEE International Conference on Neural Networks, 1942-1948.

12.
Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", Int. J. Mech. Sci., 46(3), 411-431. crossref(new window)

13.
Lin, J.C. and Nien, M.H. (2007), "Adaptive modeling and shape control of laminated plates using piezoelectric actuators", J. Mat. Proc. Tech., 189(1-3), 231-236. crossref(new window)

14.
Luo, Q. and Tong, L. (2006), "High precision shape control of plates using orthotropic piezoelectric actuators", Finite Elem. Anal. Des., 42(11), 1009-1020. crossref(new window)

15.
Mehrabian, A.R. and Yousefi-Koma, A. (2011), "A novel technique for optimal placement of piezoelectric actuators on smart structures", J. Franklin Inst., 348(1), 12-23. crossref(new window)

16.
Mukherjee, A. and Joshi, S. (2002), "Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates", AIAA J., 40(6), 1204-1210. crossref(new window)

17.
Nakasone, P.H. and Silva, E.C.N. (2010), "Dynamic design of piezoelectric laminated sensors and actuators using topology optimization", J. Intel. Mat. Syst. Str., 21(16), 1627-1652. crossref(new window)

18.
Nguyen, Q. and Tong, L. (2004), "Shape control of smart composite plate with non-rectangular piezoelectric actuators", Compos. Struct., 66(1-4), 207-214. crossref(new window)

19.
Nguyen, Q. and Tong, L. (2007a), "Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures", Mat. Design, 28(2), 387-399. crossref(new window)

20.
Nguyen, Q., Tong, L. and Gu, Y. (2007b), "Evolutionary piezoelectric actuators design optimisation for static shape control of smart plates", Comput. Method. Appl. M., 197(1-4), 47-60. crossref(new window)

21.
Rader, A.A., Afagh, F.F., Yousefi-Koma, A. and Zimcik, D.G. (2007), "Optimization of piezoelectric actuator configuration on a flexible fin for vibration control using genetic algorithms", J. Intel. Mat. Syst. Str., 18, 1015-1033. crossref(new window)

22.
Rao, S.S. (2009), Engineering Optimization, John Wiley & Sons. Inc., Hoboken, New Jersey.

23.
Reddy, J. N. (1997), Mechanics of laminated composite plates: theory and applications, Boca Raton: CRC Press.

24.
Sensharma, P.K. and Haftka, R.T. (1996), "Limits of stress reduction in a plate with a hole using piezoelectric actuators", J. Intel. Mat. Syst. Str., 7(4), 363-371. crossref(new window)

25.
Sensharma, P.K., Palantera, M.J. and Haftka, R.T. (1993) "Stress reduction in an isotropic plate with a hole by applied induced strains", J. Intel. Mat. Sys. Struct. 4(4), 509-518. crossref(new window)

26.
Shah, D.K., Joshi, S.P. and Chan, W.S. (1993), "Static structural response of plates with piezoceramic layers", Smart Mater. Str., 2(3), 172. crossref(new window)

27.
Shah, D.K., Joshi, S.P. and Chan, W.S. (1994), "Stress concentration reduction in a plate with a hole using piezoceramic layers", Smart Mater. Str., 3, 302. crossref(new window)

28.
Silva, S.d.M., Ribeiro, R., Rodrigues, J.D., Vaz, M.A.P. and Monteiro, J.M. (2004), "The application of genetic algorithms for shape control with piezoelectric patches-an experimental comparison", Smart Mat. Struct., 13(1), 220. crossref(new window)

29.
Sun, D., and Tong, L. (2005), "Design optimization of piezoelectric actuator patterns for static shape control of smart plates", Smart Mater. Str., 14(6), 1353. crossref(new window)

30.
Sun, D., Tong, L. and Liyong, T. (2004), "Static shape control of structures using nonlinear piezoelectric actuators with energy constraints", Smart Mater. Str., 13(5), 1059. crossref(new window)

31.
Sun, D., Tong, L. and Wang, D. (2004), "An incremental algorithm for static shape control of smart structures with nonlinear piezoelectric actuators", Int. J. Solids Struct., 41(9-10), 2277-2292. crossref(new window)

32.
Xu, S.X. and Koko, T.S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Finite Elem. Anal. Des., 40(3), 241-262. crossref(new window)