JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A controllability-based formulation for the topology optimization of smart structures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Smart Structures and Systems
  • Volume 17, Issue 5,  2016, pp.773-793
  • Publisher : Techno-Press
  • DOI : 10.12989/sss.2016.17.5.773
 Title & Authors
A controllability-based formulation for the topology optimization of smart structures
Goncalves, Juliano F.; Fonseca, Jun S.O.; Silveira, Otavio A.A.;
 Abstract
This work presents a methodology to distribute piezoelectric material for structural vibration active control. The objective is to design controlled structures with actuators which maximizes the system controllability. A topology optimization was formulated in order to distribute two material phases in the domain: a passive linear elastic material and an active linear piezoelectric material. The objective is the maximization of the smallest eigenvalue of the system controllability Gramian. Analytical sensitivities for the finite element model are derived for the objective functions and constraints. Results and comparisons with previous works are presented for the vibration control of a two-dimensional short beam.
 Keywords
piezoelectric actuators;controllability Gramian;topology optimization;
 Language
English
 Cited by
1.
Piezoelectric sensor location by the observability Gramian maximization using topology optimization, Computational and Applied Mathematics, 2017  crossref(new windwow)
2.
Piezoelectric actuator design considering spillover effects, Procedia Engineering, 2017, 199, 1665  crossref(new windwow)
 References
1.
Allik, H. and Hughes, T.J.R. (1995), "Finite element method for piezoelectric vibration", Int. J. Numer. Meth. Eng., 2, 151-157.

2.
Balas, M.J. (1978), "Feedback control of flexible systems", IEEE T. Automat. Contr., 23(4), 673-679. crossref(new window)

3.
Bartels, R.H. and Stewart, G.W. (1972), "Solution of the matrix equation ax+ xb= c [f4]", Commun. ACM, 15(9), 820-826. crossref(new window)

4.
Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optimization, 1, 193-202. crossref(new window)

5.
Bendsoe, M.P. and Sigmund, O. (1999), "Material interpolation schemes in topology optimization", Arch. Appl. Mech., 69, 635-654. crossref(new window)

6.
Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. M., 71(2), 197-224. crossref(new window)

7.
Burl, J.B. (1999), Linear Optimal Control, Addison-Wesley, California, USA.

8.
Gawronski, W. (2004), Advanced Structural Dynamics and Active Control of Structures, Springer-Verlag, New York, USA.

9.
Gawronski, W. and Lim, K.B. (1996), "Balanced actuator and sensor placement for flexible structures", Int. J. Control, 65, 131-145. crossref(new window)

10.
Gupta, V., Sharma, M., Thakur, N. and Singh, S.P. (2011), "Active vibration control of a smart plate using a piezoelectric sensor-actuator pair at elevated temperatures", Smart Mater. Struct., 20(10), 105023. crossref(new window)

11.
Hac, A. and Liu, L. (1993), "Sensor and actuator location in motion control of flexible structures", J. Sound Vib., 167(2), 239-261. crossref(new window)

12.
Hamdan, A.M.A. and Nayfeh, A.H. (1989), "Measures of modal controllability and observability for first and second-order linear systems", J. Guid. Control. Dynam., 12(3), 421-428. crossref(new window)

13.
Kim, J.E., Kim, D.S., Ma, P.S. and Kim, Y.Y. (2010) "Multi-physics interpolation for the topology optimization of piezoelectric systems", Comput. Method. Appl. M., 199(49), 3153-3168. crossref(new window)

14.
Kim, Y. and Junkins, J.L. (1991), "Measure of controllability for actuator placement", J. Guid. Control. Dynam., 14, 895-902. crossref(new window)

15.
Kumar, K.R. and Narayanan, S. (2008), "Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(5), 055008. crossref(new window)

16.
Leleu, S., Abou-Kandil, H. and Bonnassieux, Y. (2001), "Piezoelectric actuators and sensors location for active control of flexible structures", IEEE T. Instrum. Meas, 50(6), 1577-1582. crossref(new window)

17.
Meirovitch, L. (1990), Dynamics and Control of Structures, John Wiley & Sons, New York, USA.

18.
Onoda, J. and Haftka, R.T. (1987), "An approach to structure/control simultaneous optimization for large flexible spacecraft", AIAA J., 25(8), 1133-1138. crossref(new window)

19.
Ou, J.S. and Kikuchi, N. (1996), "Integrated optimal structural and vibration control design", Struct.Optimization, 12(4), 209-216. crossref(new window)

20.
Preumont, A. (2002), Vibration Control of Active Structures, An Introduction, Kluwer Academic Publisher, Dordrecht, The Netherlands.

21.
Rubio, W.M., Silva, E.C.N. and Paulino, G.H. (2009), "Toward optimal design of piezoelectric transducers based on multifunctional and smoothly graded hybrid material systems", J. Intel. Mat. Syst. Str., 20(14), 1725-1746. crossref(new window)

22.
Ruiz, D., Bellido, J.C., Donoso, A. and Sanchez-Rojas, J.L. (2013), "Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile", Struct. Multidiscip. O., 48(5), 1023-1026. crossref(new window)

23.
Seyranian, A.P., Lund, E. and Olhoff, N. (1994), "Multiple eigenvalues in structural optimization problems", Struct. Optimization, 8(4), 207-227. crossref(new window)

24.
Sigmund, O. (1997), "On the design of compliant mechanisms using topology optimization", Mech. Struct. Machines, 25(4), 493-524. crossref(new window)

25.
Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local-minima", Struct. Optimization, 16(1), 68-75. crossref(new window)

26.
Silva, E.C.N. and Kikuchi, N. (1999), "Design of piezoelectric transducers using topology optimization", Smart Mater. Struct., 8(3), 350. crossref(new window)

27.
Silveira, O.A.A., Fonseca, J.S.O. and Santos, I.F. (2015), "Actuator topology design using the controllability gramian", Struct. Multidiscip.O., 51(1), 145-157. crossref(new window)

28.
Sohn, J.W., Choi, S. and Kim, H.S. (2011), "Vibration control of smart hull structure with optimally placed piezoelectric composite actuators", Int. J. Mech. Sci., 53(8), 647-659. crossref(new window)

29.
Takezawa, A., Kitamura, M., Vatanabe, S.L. and Silva, E.C.N. (2014), "Design methodology of piezoelectric energy-harvesting skin using topology optimization", Struct. Multidiscip.O., 49(2), 281-297. crossref(new window)

30.
Takezawa, A., Makihara, K., Kogiso, N. and Kitamura, M. (2014), "Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems". J. Sound Vib., 333(2), 327-344. crossref(new window)

31.
Takezawa, A., Nishiwaki, S., Kitamura, M. and Silva, E.C.N. (2010), "Topology optimization for designing strain-gauge load cells", Struct. Multidiscip.O., 42 (3), 387-402. crossref(new window)

32.
Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A non-conforming element for stress analysis", Int. J. Numer. Methods in Engineering, 10(6), 1211-1219. crossref(new window)

33.
Vasques, C.M.A. and Rodrigues, J.D. (2006), "Active vibration control of smart piezoelectric beams: Comparasion of classical and optimal feedback control strategies", Comput. Struct., 84, 1402-1414. crossref(new window)

34.
Wang, Q. and Wang, C.M. (2001), "A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures", J. Sound Vib., 242(3), 507-518. crossref(new window)

35.
Wu, B., Xu, Z. and Li, Z. (2007), "A note on computing eigenvector derivatives with distinct and repeated eigenvalues", Commun. Numer. Meth. En., 23, 241-251.

36.
Zhang, X. and Kang, Z. (2014), "Dynamic topology optimization of piezoelectric structures with active control for reducing transient response", Computer Methods in Applied Mechanics and Engineering, 281, 200-219. crossref(new window)