JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Smart Structures and Systems
  • Volume 18, Issue 1,  2016, pp.183-196
  • Publisher : Techno-Press
  • DOI : 10.12989/sss.2016.18.1.183
 Title & Authors
Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation
Luongo, Angelo; Casciati, Sara; Zulli, Daniele;
 Abstract
In this paper a nonlinear, bistable, single degree of freedom system is considered. It consists of a Duffing oscillator externally excited by a non-resonant, harmonic force. A customized perturbation scheme is proposed to achieve an approximate expression for periodic solutions. It is based on the evaluation of the quasi-steady (slow) solution, and then on a variable change followed by two perturbation steps which aim to capture the fast, decaying contribution of the response. The reconstructed solution, given by the sum of the slow and fast contributions, is in a good agreement with the one obtained by numerical integration.
 Keywords
energy harvesting;duffing oscillator;slow-fast dynamics;perturbation method;
 Language
English
 Cited by
1.
Chattering as a singular problem, Nonlinear Dynamics, 2017, 90, 4, 2797  crossref(new windwow)
 References
1.
Ali, S.F., Adhikari, S., Friswell, M.I. and Narayanan, S. (2011), "The analysis of piezomagnetoelastic energy harvesters under broadband random excitations" , J. Appl. Phys., 109(7), 074904. crossref(new window)

2.
Amin Karami, M. and Inman, J. (2011), "Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems", J. Sound Vib., 330 (23), 5583-5597. crossref(new window)

3.
Arrieta, A.F., Hagedorn, P., Erturk, A. and Inman, D.J. (2010), "A piezoelectric bistable plate for nonlinear broadband energy harvesting", Appl. Physics Lett., 97, 104102. crossref(new window)

4.
Blackman, I. (Ed.) (2004), Selected topics in vibrational mechanics, World Scientific Publishing, New Jersey.

5.
Cao, Q., Wiercigroch, M., Pavlovskaia, E., Thompson, J.T. and Grebogi, C. (2008a), "Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics", Philos. T. R. Soc. A, 366, 635-652. crossref(new window)

6.
Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C. and Thompson, J.T. (2008b), "The limit case response of the archetypal oscillator for smooth and discontinuous dynamics", Int. J. Nonlinear Mech., 43 (6), 462-473. crossref(new window)

7.
Cohen, N. and Bucher, I. (2014), "On the dynamics and optimization of a non-smooth bistable oscillator - Application to energy harvesting", J. Sound Vib., 333, 4653-4667. crossref(new window)

8.
Cohen, N., Bucher, I. and Feldman, M. (2012), "Slow-fast response decomposition of a bi-stable energy harvester", Mech. Syst. Signal Pr., 31, 29-39. crossref(new window)

9.
Ferrari, M. Bau, M. Guizzetti, M. and Ferrari, V. (2011), "A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations", Sensor. Actuat. A: Phys., 172(1),287-292. crossref(new window)

10.
Ferrari, M., Ferrari, V., Guizzetti, M., Ando, B., Baglio, S. and Trigona, C. (2010), "Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters", Sensor. Actuat. A: Phys., 162(2), 425-431. crossref(new window)

11.
Han, Q. and Bi, X. (2011), "Bursting oscillations in duffing's equation with slowly changing external forcing", Commun Nonlinear Sci Numer Simulat., 16, 4146-4152. crossref(new window)

12.
Harne, R.L. and Wang, K.W. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mater. Struct., 22 (2), 023001. crossref(new window)

13.
Kovacic, I. and Cartmell, M. (2014), "On the behaviour of bistable oscillators with slowly varying external excitation", ENOC Proceedings, Wien, July.

14.
Lin, J.T., Lee, B. and Alphenaar, B. (2010), "The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency", Smart Mater. Struct., 19(4), 045012. crossref(new window)

15.
Litak, G., Friswell, M.I. and Adhikari, S. (2010), "Magnetopiezoelastic energy harvesting driven by random excitations" , Appl. Phys. Lett., 96(21), 214103. crossref(new window)

16.
Masana, R. and Daqaq, M.F. (2012), "Energy harvesting in the super-harmonic frequency region of a twin-well oscillator" , J. Appl. Phys., 111, 044501. crossref(new window)

17.
Pilipchuk, V.N. (2009), "Closed-form periodic solutions for piecewise-linear vibrating systems", Nonlinear Dynam., 50, 169-178.

18.
Ramlan, R., Brennan, M.J., Mace, B.R. and Kovacic, I. (2010), "Potential benefits of a non-linear stiffness in an energy harvesting device", Nonlinear Dynam., 59, 545-580. crossref(new window)

19.
Shaw, S.W. and Holmes, P.J. (1983), "A periodically forced piecewise linear oscillator", J. Sound Vib., 90 (1), 129-155. crossref(new window)

20.
Uspensky, B. and Avramov, K. (2014), "Nonlinear modes of piecewise linear systems under the action of periodic excitation", Nonlinear Dynam., 76(2), 1151-1156, crossref(new window)

21.
Verhulst, F. (2005), Methods and Applications of Singular Perturbations. Springer-Verlag, Berlin.

22.
Verhulst, F. (2007), "Singular perturbation methods for slow-fast dynamics", Nonlinear Dynam., 50 (4), 747-753, ISSN 0924-090X. 10.1007/s11071-007-9236-z. crossref(new window)

23.
Zou, K. and Nagarajaiah, S. (2015), "Study of a piecewise linear dynamic system with negative and positive stiffness", Commun Nonlinear Sci Numer Simulat., 22, 1084-1101. crossref(new window)