JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Simulation of Air Quality Over South Korea Using the WRF-Chem Model: Impacts of Chemical Initial and Lateral Boundary Conditions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Atmosphere
  • Volume 25, Issue 4,  2015, pp.639-657
  • Publisher : Korean Meteorological Society
  • DOI : 10.14191/Atmos.2015.25.4.639
 Title & Authors
Simulation of Air Quality Over South Korea Using the WRF-Chem Model: Impacts of Chemical Initial and Lateral Boundary Conditions
Lee, Jae-Hyeong; Chang, Lim-Seok; Lee, Sang-Hyun;
  PDF(new window)
 Abstract
There is an increasing need to improve the air quality over South Korea to protect public health from local and remote anthropogenic pollutant emissions that are in an increasing trend. Here, we evaluate the performance of the WRF-Chem (Weather Research and Forecasting-Chemistry) model in simulating near-surface air quality of major Korean cities, and investigate the impacts of time-varying chemical initial and lateral boundary conditions (IC/BCs) on the air quality simulation using a chemical downscaling technique. The model domain was configured over the East Asian region and anthropogenic MICS-Asia 2010 emissions and biogenic MEGAN-2 emissions were applied with RACM gaseous chemistry and MADE/SORGAM aerosol mechanism. Two simulations were conducted for a 30-days period on April 2010 with chemical IC/BCs from the WRF-Chem default chemical species profiles (`WRF experiment`) and the MOZART-4 (Model for OZone And Related chemical Tracers version 4) (`WRF_MOZART experiment`), respectively. The WRF_MOZART experiment has showed a better performance to predict near-surface CO, , , and mixing ratios at 7 major Korean cities than the WRF experiment, showing lower mean bias error (MBE) and higher index of agreement (IOA). The quantitative impacts of the chemical IC/BCs have depended on atmospheric residence time of the pollutants as well as the relative difference of chemical mixing ratios between the WRF and WRF_MOZART experiments at the lateral boundaries. Specifically, the WRF_MOZART experiment has reduced MBE in CO and O3 mixing ratios by 60~80 ppb and 5~10 ppb over South Korea than those in the WRF-Chem default simulation, while it has a marginal impact on and mixing ratios. Without using MOZART-4 chemical IC, the WRF simulation has required approximately 6-days chemical spin-up time for the East Asian model domain. Overall, the results indicate that realistic chemical IC/BCs are prerequisite in the WRF-Chem simulation to improve a forecast skill of local air quality over South Korea, even in case the model domain is sufficiently large to represent anthropogenic emissions from China, Japan, and South Korea.
 Keywords
WRF-Chem;MOZART-4;chemical IC/BCs;criteria pollutants;South Korea;
 Language
Korean
 Cited by
1.
교량건설에 따른 도서지역 대기환경 평가,김도용;김재진;

한국환경기술학회지, 2016. vol.17. 4, pp.353-361
 References
1.
Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ., 32, 2981-2999. crossref(new window)

2.
Benjey, W., M. Houyoux, and J. Susick, 2001: Implementation of the SMOKE emission data processor and SMOKE tool input data processor in models-3, U.S. EPA.

3.
Borge, R., J. Lopez, J. Lumbreras, A. Narros, and E. Rodriguez, 2010: Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula. Atmos. Environ., 44, 2681-2695. crossref(new window)

4.
Carmichael, G. R., G. Calori, H. Hayami, I. Uno, S.-Y. Cho, M. Engardt, S.-B. Kim, Y. Ichikawa, Y. Ikeda, J.-H. Woo, H. Ueda, and M. Amann, 2002: The MICSAsia study: Model intercomparison of long-range transport and sulfur deposition in East Asia. Atmos. Environ., 36, 175-199. crossref(new window)

5.
Cater, W. P. L., 2000: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment. Final Report to the California Air Resources Board, Contracts No. 92-329 and No. 95-308.

6.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Wea. Rev., 129, 569-585. crossref(new window)

7.
Cho, K.-T., J.-C. Kim, and J.-H. Hong, 2006: A study on the comparison of biogenic VOC (BVOC) emissions estimates by BEIS and CORINAIR methodologies. J. Korean Soc. Atmos. Environ., 22, 167-177.

8.
Coats, C. J. Jr., 1996: High performance algorithms in the sparse matrix operator kernel emissions (SMOKE) modeling system, Ninth Joint Conf. on Applications of Air Pollution Meteorology with the A & WMA, Atlanta, GA, Amer. Meteor. Soc., 584-588.

9.
Damian, V., A. Sandu, M. Damian, F. Potra, and G. R. Carmichael, 2002: The kinetic preprocessor KPP-a software environment for solving chemical kinetics. Comput. Chem. Eng., 26, 1567-1579. crossref(new window)

10.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. crossref(new window)

11.
Elbern, H., H. Schmidt, and A. Ebel, 1997, Variational data assimilation for tropospheric chemistry modeling. J. Geophys. Res., 102, 15967-15985. crossref(new window)

12.
Elbern, H., and H. Schmidt, 1999: A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling. J. Geophys. Res., 104, 18583-18598. crossref(new window)

13.
Elbern, H., and H. Schmidt, 2001: Ozone episode analysis by four-dimensional variational chemistry data assimilation. J. Geophys. Res., 106, 3569-3590. crossref(new window)

14.
Elbern, H., A. Strunk, H. Schmidt, and O. Talagrand, 2007, Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys., 7, 3749-3769. crossref(new window)

15.
Emmons, L. K., and Coauthors, 2010: Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci. Model Develop., 3, 43-67. crossref(new window)

16.
Fast, J., and Coauthors, 2009: Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: Implications for assessing treatments of secondary organic aerosols. Atmos. Chem. Phys., 9, 6191-6215. crossref(new window)

17.
Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 107-173. crossref(new window)

18.
Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S. J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20225-20273. crossref(new window)

19.
Gong, S. L., X. Y. Zhang, T. L. Zhao, I. G. Mckendry, D. A. Jaffe, and N. M. Lu, 2003: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. model simulation and validation. J. Geophys. Res., 108, 4262, doi:10.1029/2002JD002633. crossref(new window)

20.
Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled "online" chemistry within the WRF model. Atmos. Environ., 39, 6957-6975. crossref(new window)

21.
Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 13, 23845-23893. crossref(new window)

22.
Hogrefe, C., P. S. Porter, E. Gego, A. Gilliland, R. Gilliam, J. Swall, J. Irwin, and S. T. Rao, 2006: Temporal features in observed and simulated meteorology and air quality over the Eastern United States. Atmos. Environ., 40, 5041-5055. crossref(new window)

23.
Hong, S.-C., J.-B. Lee, J.-Y. Choi, K.-J. Moon, H.-J. Lee, Y.-D. Hong, S.-J. Lee, and C.-K. Song, 2012: The effect of the chemical lateral boundary conditions on CMAQ simulations of tropospheric ozone for East Asia. J. Korean Soc. Atmos. Environ., 28, 581-594. crossref(new window)

24.
Hong, S.-Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Wea. Rev., 132, 103-120. crossref(new window)

25.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Wea. Rev., 134, 2318-2341. crossref(new window)

26.
Horowitz, L. W., S. Walters, D. L. Mauzerall, L. K. Emmons, P. J. Rasch, C. Granier, X. Tie, J. F. Lamarque, M. G. Schultz, G. S. Tyndall, J. J. Orlando, and G. P. Brasseur, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108, D24, 4784, doi:10.1029/2002JD002853. crossref(new window)

27.
Horowitz, L. W., and S.-U. Park, 2002: A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea. Atmos. Environ., 36, 4173-4187. crossref(new window)

28.
Horowitz, L. W., D. W. Byun, R. J. Park, N.-K. Moon, S. T. Kim, and S. Zhong, 2007: Impact of transboundary transport of carbonaceous aerosols on the regional air quality in the United States: A case study of the South American wildland fire of May 1998. J. Geophys. Res., 112, D07201, doi:10.1029/2006JD007544. crossref(new window)

29.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944. crossref(new window)

30.
Jeon, W.-B., H.-W. Lee, S.-H. Lee, J.-H. Park, and H.-G. Kim, 2014: Numerical study on the characteristics of high $PM_{2.5}$ episodes in Anmyeondo area in 2009. J. Environ. Sci. International, 23, 249-259. crossref(new window)

31.
Jonson, J. E., J. K. Sundet, and L. Tarrason, 2001: Model calculations of present and future levels of ozone and ozone precursors with a global and a regional model. Atmos. Environ., 35, 525-537. crossref(new window)

32.
Kang, J.-Y., S.-W. Kim, and S.-C. Yoon, 2012: Estimation of dust emission schemes and input parameters in wintertime Asian dust simulation: A case study of winter dust event on December 29, 2007. J. Korean Soc. Atmos. Environ., 1, 1-11.

33.
Kim, J.-Y., J.-S. Kim, J.-H. Hong, D.-I. Jung, S.-J. Ban, and Y.-M. Lee, 2008a: Assessment of changed input modules with SMOKE model. J. Korean Soc. Atmos. Environ., 24, 284-299. crossref(new window)

34.
Kim, S.-T., N.-K. Moon, and D.-W. Byun, 2008b: Korea emissions inventory processing using the US EPA's SMOKE system. Asian J. Atmos. Environ., 2, 34-46. crossref(new window)

35.
Kim, S.-T., N.-K. Moon, K.-T. Cho, D.-W. Byun, and E.-Y. Song, 2008c: Estimation of biogenic emissions over South Korea and its evaluation using air quality simulations. J. Korean Soc. Atmos. Environ., 24, 423-438. crossref(new window)

36.
Kim, S.-T., and C.-B. Lee, 2011: Estimating influence of local and neighborhood emissions on ozone concentrations over the Kwang-Yang Bay based on air quality simulations for a 2010 June episode. J. Korean Soc. Atmos. Environ., 27, 504-522. crossref(new window)

37.
Kim, S.-T., 2011: Ozone simulations over the Seoul metropolitan area for a 2007 June episode, part V: Application of CMAQ-HDDM to predict ozone response to emission change, J. Korean Soc. Atmos. Environ., 27, 772-790. crossref(new window)

38.
Klimont, Z., J. Cofala, W. Schopp, M. Amann, D. G. Streets, Y. Ichikawa, and S. Fujita, 2001: Projections of $SO_2$, $NO_x$, $NH_3$ and VOC emissions in East Asia up to 2030. Water, Air Soil Pollut., 130, 193-198. crossref(new window)

39.
Kurokawa, J., T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-Maenhout, T. Fukui, K. Kawashima, and H. Akimoto, 2013, Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional emission inventory in Asia (REAS) version 2. Atmos. Chem. Phys., 13, 11019-11058. crossref(new window)

40.
Lee, H.-J., S.-W. Kim, J. Brioude, O. R. Cooper, G. J. Frost, C.-H. Kim, R.-J. Park, M. Trainer, and J.-H. Woo, 2014: Transport of $NO_x$ in East Asia identified by satellite and in situ measurements and lagrangian particle dispersion model simulations. J. Geophys. Res., 119, doi:10.1002/2013JD021185. crossref(new window)

41.
Lee, S.-H., S.-W. Kim, M. Trainer, G. J. Frost, S. A. McKeen, O. R. Cooper, F. Flocke, J. S. Holloway, J. A. Neuman, T. Ryerson, C. J. Senff, A. L. Swanson, and A. M. Thompson, 2011: Modeling ozone plumes observed downwind of New York City over the North Atlantic Ocean during the ICARTT field campaign. Atmos. Chem. Phys., 11, 7375-7397.

42.
Liu, S. C., and Coauthors, 1996: Model study of tropospheric trace species distributions during PEM-West A, J. Geophys. Res., 101, 2073-2085. crossref(new window)

43.
Liu, X., L. Duan, J. Mo, E. Du, J. Shen, X. Lu, Y. Zhang, X. Zhou, C. He, and F. Zhang, 2011: Nitrogen deposition and its ecological impact in China: An overview. Environ. Pollut., 159, 2251-2264. crossref(new window)

44.
Madronich, S., 1987: Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res., 92, 9740-9752. crossref(new window)

45.
McKeen, S. A., G. Wotawa, D. D. Parrish, J. S. Holloway, M. P. Buhr, G. Hubler, F. C. Fehsenfeld, and J. F. Meagher, 2002: Ozone production from Canadian wildfires during June and July of 1995, J. Geophys. Res., 107, 4192, doi:10.1029/2001JD000697. crossref(new window)

46.
McKeen, S. A., S. H. Chung, J. Wilczak, G. Grell, I. Djalalova, S. Peckham, W. Gong, V. Bouchet, R. Moffet, Y. Tang, G. R. Carmichael, R. Mathur, and S. Yu, 2007: Evaluation of several $PM_{2.5}$ forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res., 112, doi:10.1029/2006JD007608. crossref(new window)

47.
Meij, A. D., E. Bossioli, C. Penard, J. F. Vinuesa, and I. Price, 2015: The effect of SRTM and Corine Land Cover data on calculated gas and $PM_{10}$ concentrations in WRF-Chem. Atmos. Environ., 101, 177-193. crossref(new window)

48.
Moon, Y.-S., and Y.-S. Koo, 2006: A study on examples applicable to numerical land cover map data for atmospheric environment fields in the metropolitan area of Seoul-Real time calculation of biogenic $CO_2$ flux and VOC emission due to a geographical distribution of vegetable and analysis on sensitivity of air temperature and wind field within MM5. J. Korean Soc. Atmos. Environ., 22, 661-678.

49.
Moon, Y.-S., Y.-S. Koo, and O.-J. Jung, 2014: Analysis of sensitivity to prediction of particulate matters and related meteorological fields using the WRF-Chem model during Asian dust episode days. J. Korean Earth Sci. Soc., 35, 1-18. crossref(new window)

50.
Samaali, M., M. D. Moran, V. S. Bouchet, R. Pavlovic, S. Cousineau, and M. Sassi, 2009: On the influence of chemical initial and boundary conditions on annual regional air quality model simulations for North America. Atmos. Environ., 43, 4873-4885. crossref(new window)

51.
Sandu, A., D. N. Daescu, and G. R. Carmichael, 2003: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I-theory and software tools. Atmos. Environ., 37, 5083-5096. crossref(new window)

52.
Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res., 106, 28275-28293. crossref(new window)

53.
Seinfeld, J. H., and S. N. Pandis, 1997: Atmospheric chemistry and physics: From air pollution to climate change. Wiley Intersci., 1326 pp.

54.
Song, C.-K., D.-W. Byun, R. B. Pierce, J. A. Alsaadi, T. K. Schaack, and F. Vukovich, 2008: Downscale linkage of global model output for regional chemical transport modeling: Method and general performance. J. Geophys. Res., 113, D08308, doi:10.1029/2007JD008951. crossref(new window)

55.
Stockwell, W. R., F. Kirchner, M. Kuhn, and S. Seefeld, 1997: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res., 102, 25847-25879. crossref(new window)

56.
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465-3485. crossref(new window)

57.
Tang, Y., and Coauthors, 2007: Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models. J. Geophys. Res., 112, D10S18, doi:10.1029/2006JD007515. crossref(new window)

58.
Tang, Y., and Coauthors, 2009: The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States. Environ. Fluid Mech., 9, 43-58, doi 10.1007/s10652-008-9092-5. crossref(new window)

59.
Tuccella, P., G. Curci, G. Visconti, B. Bessagnet, L. Menut, and R. J. Park, 2012: Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res., 117, D03303, doi:10.1029/2011JD016302. crossref(new window)

60.
Wu, J.-B., J. Xu, M. Pagowski, F. Geng, S. Gu, G. Zhou, Y. Xie, and Z. Yu, 2015: Modeling study of a severe aerosol pollution event in December 2013 over Shanghai China: An application of chemical data assimilation. Particuology, 20, 41-51. crossref(new window)

61.
Zannetti, P., 2003: Air quality modeling: Theories, methodologies, computational techniques, and available databases and software. EnviroComp Institute Air Waste Manage. Assoc., 42-43.

62.
Zhang, Q., D. G. Streets, K. He, Y. Wang, A. Richter, J. P. Burrows, I. Uno, C. J. Jang, D. Chen, Z. Yao, and Y. Lei, 2007: $NO_x$ emission trends for China, 1995-2004: The view from the ground and the view from space. J. Geophys. Res., 112, D22306, doi:10.1029/2007JD008684. crossref(new window)

63.
Zhang, Q., D. G. Streets, G. R. Carmichael, K. B. He, H. Huo, A. Kannari, Z. Klimont, I. S. Park, S. Reddy, J. S. Fu, D. Chen, L. Duan, Y. Lei, L. T. Wang, and Z. L. Yao, 2009: Asian emissions in 2006 for the NASA INTEXB mission. Atmos. Chem. Phys., 9, 5131-5153. crossref(new window)