JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Atmosphere
  • Volume 26, Issue 1,  2016, pp.111-126
  • Publisher : Korean Meteorological Society
  • DOI : 10.14191/Atmos.2016.26.1.111
 Title & Authors
Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas
Jee, Joon-Bum; Jang, Min; Yi, Chaeyeon; Zo, Il-Sung; Kim, Bu-Yo; Park, Moon-Soo; Choi, Young-Jean;
  PDF(new window)
 Abstract
In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.
 Keywords
Roughness length;WISE-WRF model;wind speed;friction speed;Automatic Weather System (AWS);
 Language
Korean
 Cited by
1.
도시의 지표형태학적 특성에 기반한 지면미기후 분석: 기온추정 및 평가,이채연;안승만;김규랑;권혁기;민재식;

대기, 2016. vol.26. 3, pp.445-459 crossref(new window)
1.
Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation, Atmosphere, 2016, 26, 3, 445  crossref(new windwow)
 References
1.
Andre, J. C., and C. Blondin, 1986: On the effective roughness length for use in numerical three-dimensional models. Boundary-Lay. Meteorol., 35, 231-245. crossref(new window)

2.
Barlag, A. B., and W. Kuttler, 1991: The significance of country breezes for urban planning. Energy Build., 15, 291-297.

3.
Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteorol., 7, 575-582. crossref(new window)

4.
Bottema, M., 1996: Roughness parameters over regular rough surfaces: Experimental requirements and model validation. J. Wind Eng. Ind. Aerod., 64, 249-265. crossref(new window)

5.
Cao, M., and Z. Lin, 2014: Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation. J. Appl. Math., 2014, Article ID 267683, doi:10.1155/2014/267683. crossref(new window)

6.
Chen, F., S. Miao, M. Tewari, J. Bao, and H. Kusaka, 2011: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, doi:10.1029/2010JD015533. crossref(new window)

7.
Dong, Z., X. Liu, H. Wang, and X. Wang, 2003: Aeolian sand transport: a wind tunnel model. Sediment. Geol., 161, 71-83. crossref(new window)

8.
Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2011. The operational sea surface temperature and sea ice analysis (OSTIA). Remote Sens. Environ., 116, 140-158, doi:10.1016/j.rse.2010.10.017. crossref(new window)

9.
Gal, T., and Z. Sumeghy, 2007: Mapping the roughness parameters in a large urban area for urban climate applications. Acta Clim. ET Chorol., 2007, 40-41.

10.
Grimmond, C. S. B., and C. Souch, 1994: Surface description for urban climate studies: a GIS based methodology. Geocarto Int., 9, 47-59. crossref(new window)

11.
Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. Clim., 38, 1262-1292. crossref(new window)

12.
Ha, K. J., A. S. Suh, and H. S. Chung, 1998: The application of satellite data to land surface process parameterization in ARPS model. J. Korean Assoc. Geog. Inform. Stud., 1, 99-108.

13.
Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteorol. Clim., 49, 889-901. crossref(new window)

14.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev., 134, 2318-2341. crossref(new window)

15.
Hu, X., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Clim., 49, 1831-1844. crossref(new window)

16.
Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 61 pp.

17.
Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteorol. Clim., 46, 1067-1079. crossref(new window)

18.
Landsberg, H. E., 1981: The Urban Climate. Academic Press, 285 pp.

19.
Lee, Y.-H., and S.-U. Park, 1997: Modification of boundary layer by a change of surface roughness. J. Korean Meteorol. Soc., 33, 445-456.

20.
Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J. Appl. Meteorol. Clim., 51, 219-241. crossref(new window)

21.
Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864. crossref(new window)

22.
Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163-187.

23.
Ng, E., C. Yuan, L. Chen, C. Ren, and J. C. Fung, 2011: Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape. Urban Plan., 101, 59-74. crossref(new window)

24.
Oke, T. R., 1987: Boundary Layer Climates. Methuen, Inc., 435 pp.

25.
Park, S. H., J. B. Jee, and C. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over seoul metropolitan and surrounding areas. Atmosphere, 25, 309-322. crossref(new window)

26.
Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Clim., 46, 9, 1383-1395. crossref(new window)

27.
Priestnall, G., J. Jaafar, and A. Duncan, 2000: Extracting urban features from LiDAR digital surface models. Computers, Environment and Urban Systems, 24, 65-78. crossref(new window)

28.
Ratti, C., and P. Richens, 1999: Urban texture analysis with image processing techniques. In Computers in Building. Springer, 49-64 pp.

29.
Ratti, C., S. Di Sabatino, and R. Bitter, 2006: Urban texture analysis with image processing techniques: wind and dispersion. Theoretical and Appl. Clim., 84, 77-99. crossref(new window)

30.
Raupach, M., 1992: Drag and drag partition on rough surfaces. Boundary-Lay. Meteorol., 60, 375-395. crossref(new window)

31.
Reijmer, C. H., E. van Meijgaard, and M. R. van den Broeke, 2004: Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Boundary-Lay. Meteorol., 111, 313-337. crossref(new window)

32.
Ryu, Y. H., J. J. Baik, K. H. Kwak, S. Kim, and N. Moon, 2013: Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. Atmos. Chem. Phys., 13, 2177-2194. crossref(new window)

33.
Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteorol. Clim., 50, 1107-1128. crossref(new window)

34.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, 113 pp.

35.
Steiniger, S., T. Lange, D. Burghardt, and R. Weibel, 2008: An approach for the classification of urban building structures based on discriminant analysis techniques. Transactions in GIS, 12, 31-59.

36.
Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J. Appl. Meteorol., 27, 1036-1054. crossref(new window)

37.
Voogt, J. A., and T. R. Oke, 1997: Complete urban surface temperatures. J. Appl. Meteorol., 36, 1117-1132. crossref(new window)

38.
Vukovich, F. M., 1971: Theoretical analysis of the effect of mean wind and stability on a heat island circulation characteristic of an urban complex. Mon. Weather Rev., 99, 919-926. crossref(new window)

39.
Wang, W., C. Bruyere, M. Duda, J. Dudhia, D. Gill, H.-C. Lin, J. Michalakes, S. Rizvi, and X. Zhang, 2010: Weather Research & Forecasting, ARW Version 3 Modeling System User's Guide. Mesoscale and Microscale Meteorology Division, Boulder, Co, Natl. Center. Atmos. Res., 350 pp.

40.
Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteorol., 40, 192-209. crossref(new window)

41.
Yi, C., T. H. Kwon, M. S. Park, Y. J. Choi, and S. M. Ahn, 2015: A study on the roughness length spatial distribution in relation to the seoul building morphology. Atmosphere, 25, 339-351. crossref(new window)

42.
Yoo, J., J. K. Hong, H. Kwon, J. H. Lim, and J. Kim, 2010: On estimation of zero plane displacement from singlelevel wind measurement above a coniferous forest. Korean Agric. Forest Meteorol., 12, 45-62. crossref(new window)