Advanced SearchSearch Tips
Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Atmosphere
  • Volume 26, Issue 1,  2016, pp.203-214
  • Publisher : Korean Meteorological Society
  • DOI : 10.14191/Atmos.2016.26.1.203
 Title & Authors
Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment
Jung, Myungil; Son, Seok-Woo; Lim, Yuna; Song, Kanghyun; Won, DukJin; Kang, Hyun-Suk;
  PDF(new window)
This study explores the 6-month lead prediction skill of stratospheric temperature and circulations in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment over the period of 1996~2009. Both the tropical and extratropical circulations are considered by analyzing the Quasi-Biennial Oscillation (QBO) and Northern Hemisphere Polar Vortex (NHPV). Their prediction skills are quantitatively evaluated by computing the Anomaly Correlation Coefficient (ACC) and Mean Squared Skill Score (MSSS), and compared with those of El Nino-Southern Oscillation (ENSO) and Arctic Oscillation (AO). Stratospheric temperature is generally better predicted than tropospheric temperature. Such improved prediction skill, however, rapidly disappears in a month, and a reliable prediction skill is observed only in the tropics, indicating a higher prediction skill in the tropics than in the extratropics. Consistent with this finding, QBO is well predicted more than 6 months in advance. Its prediction skill is significant in all seasons although a relatively low prediction skill appears in the spring when QBO phase transition often takes place. This seasonality is qualitatively similar to the spring barrier of ENSO prediction skill. In contrast, NHPV exhibits no prediction skill beyond one month as in AO prediction skill. In terms of MSSS, both QBO and NHPV are better predicted than their counterparts in the troposphere, i.e., ENSO and AO, indicating that the GloSea5 has a higher prediction skill in the stratosphere than in the troposphere.
GloSea5;seasonal prediction;QBO;polar vortex;
 Cited by
Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584. crossref(new window)

Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convextion. J. Climate, 16, 2552-2568. crossref(new window)

Dunkerton, T. J., 1990: Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J. Meteorol. Soc. Japan, 68, 499-508. crossref(new window)

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597. crossref(new window)

Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 1273-1289. crossref(new window)

Gong, D.-Y., S. W. Wang, and J. H. Shu, 2001: East Asian winter monsoon and arctic oscillation. Geophys. Res. Lett., 28, 2073-2076. crossref(new window)

Gong, D.-Y., J. Yang, S.-J. Kim, Y. Gao, D. Guo, T. Zhou, and M. Hu, 2011: Spring arctic oscillation-East Asian summer monsoon connection through circulation changes over the western north pacific. Climate Dyn., 37, 2199-2216. crossref(new window)

Gupta, S., A. P. Durack, J. N. Brown, S. E. Wijffels, D. Monselesan, and S. Phipps, 2012: Climate Drift in the CMIP3 models. J. Climate, 25, 4621-4640. crossref(new window)

Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 2218-2225. crossref(new window)

Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208. crossref(new window)

Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 125, 773-788.

Hurrell, J., A. M. Gerald, B. David, L. D. Thomas, K. Ben, and W. Bruce, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 1819-1832. crossref(new window)

Ichimaru, T., S. Noguchi, T. Hirooka, and H. Mukougawa, 2016: Predictability changes of stratospheric circulations in northern hemisphere winter. J. Meteor. Soc. Japan, 94.

Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31, 647-664. crossref(new window)

Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337 (in Korean with English abstract). crossref(new window)

Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433-440. crossref(new window)

Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multimodel CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701.

Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48. crossref(new window)

MacLachlan, C., and Coauthors, 2014: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084.

Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Q. J. R. meteorol. Soc., 122, 1405-1446. crossref(new window)

Poveda, G., A. Jaramillo, M. M. Gil, N. Quiceno, and R. I. Mantilla, 2001; Seasonality in ENSO-related precipitation, river discharge, soil moisture, and vegetation index in Colombia. Waler Resour. Res., 37, 2169-2178. crossref(new window)

Scaife, A. A., and Coauthors, 2014: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752-1758. crossref(new window)

Shindell, D. T., G. A. Schmidt, M. E. Mann, D. Rind, and A. Waple, 2001: Solar forcing of regional climate change during the Maunder Minimum. Science, 294, 2149-2152. crossref(new window)

Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98-102. crossref(new window)

Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 3325-3338. crossref(new window)

Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Monthto-month variability. J. Climate, 13, 1000-1016. crossref(new window)

Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421-1428. crossref(new window)

Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q. J. R. Meteorol. Soc., 141, 987-1003. crossref(new window)

Wang, B., and Coauthors, 2009: Advanced and prospectus of seasonal prediction: assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-117. crossref(new window)

Wang, B., B. Xiang, and J.-Y. Lee, 2012: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci., USA, 110, 2718- 2722.

Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian Oscillation by the stratospheric Quasi-Biennial Oscillation. Geophys. Res. Lett., 43, 1392-1398. crossref(new window)