Advanced SearchSearch Tips
Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Atmosphere
  • Volume 26, Issue 1,  2016, pp.35-45
  • Publisher : Korean Meteorological Society
  • DOI : 10.14191/Atmos.2016.26.1.035
 Title & Authors
Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System
Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Kang, Hyun-Suk; Won, Duk-Jin;
  PDF(new window)
Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.
Seasonal forecast system;soil moisture initialization;land-atmosphere interaction;anomaly initialization;
 Cited by
GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가,문수진;한수희;최광순;송정현;

한국수자원학회논문집, 2016. vol.49. 9, pp.761-771 crossref(new window)
Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. crossref(new window)

Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble predictionsystem. Q. J. R. Meteorol. Soc., 135, 767-776, doi:10.1002/qj.394. crossref(new window)

Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689-706. crossref(new window)

Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 2900-2922. crossref(new window)

Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. Clim. Hydrometeorol., 4, 599-610. crossref(new window)

Douville, H., 2004: Relevance of soil moisture for seasonal atmospheric predictions: is it an initial value problem? Climate Dyn., 22, 429-446. crossref(new window)

Entin, J. K., and Coauthors, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11865-11877. crossref(new window)

Hunke, E. C., W. H. Lipscomb, and A. K. Turner, 2010: CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 4.1 LACC-06-012. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 675.

Jeong, J. H., H. W. Linderholm, S. H. Woo, C. Folland, B. M. Kim, S. J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956-1972. crossref(new window)

Koster, R. D., and Coauthors, 2002: Comparing the degree of land-atmosphere interaction in four atmospheric general circulation models. Clim. Hydrometeorol., 3, 363-375. crossref(new window)

Koster, R. D., and Coauthors, 2004a: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. Clim. Hydrometeorol., 5, 1049-1063. crossref(new window)

Koster, R. D., and Coauthors, 2004b: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138-1140. crossref(new window)

Koster, R. D., and Coauthors, 2006: GLACE: The global landatmosphere coupling experiment. Part I: Overview. Clim. Hydrometeorol., 7, 590-610. crossref(new window)

Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677. crossref(new window)

Koster, R. D., and Coauthors, 2011: The second phase of the global land-atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. Clim. Hydrometeorol., 12, 805-822. crossref(new window)

Lea, D. J., I. Mirouze, M. J. Martin, R. R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere, land, ocean, sea ice model. Mon. Wea. Rev., 143, 4678-4694. crossref(new window)

Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 504-513.

MacLachlan, C., and Coauthors, 2014: Global seasonal forecast system version 5 (GloSea5): A high-resolutionseasonal forecast system. Q. J. R. Meteorol. Soc., doi:10.1002/qj.2396. crossref(new window)

Madec, G., 2008: NEMO ocean engine. Note du Pole de Modelisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619.

Maidens, A., A. A. Scaife, A. Arribas, J. Knight, C. MacLachlan, D. Peterson, and M. Gordon, 2013: GloSea5: The new met office high resolution seasonal prediction system. EGU general assembly 2013, 7-12 April, 2013 in Vienna, Austria, ID. EGU 2013-7649.

Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Am. Meteorol. Soc., 90, 1467-1485. crossref(new window)

Orsolini, Y. J., and Coauthors, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 1969-1982. crossref(new window)

Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2015: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 1-17.

Reichle, R. H., and Coauthors, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322-6338. crossref(new window)

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625. crossref(new window)

Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381-394. crossref(new window)

Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Rev., 99, 125-161. crossref(new window)

Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088-3111. crossref(new window)

Stocker, T. F., and Coauthors, Eds., 2014: Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1552 pp.

Vinnikov, K. Y., and I. B. Yeserkepova, 1991: Soil moisture: Empirical data and model results. J. Climate, 34, 504-513.

Walters, D. N., and Coauthors, 2011: The met office unified modelglobal atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011. crossref(new window)

Wang, B., and Coauthors, 2008: Advance and prospectus of seasonal prediction: assessment of the APCC/Cli-PAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-117.