Advanced SearchSearch Tips
Characteristics of Aerosol and Cloud Condensation Nuclei Concentrations Measured over the Yellow Sea on a Meteorological Research Vessel, GISANG 1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Atmosphere
  • Volume 26, Issue 2,  2016, pp.243-256
  • Publisher : Korean Meteorological Society
  • DOI : 10.14191/Atmos.2016.26.2.243
 Title & Authors
Characteristics of Aerosol and Cloud Condensation Nuclei Concentrations Measured over the Yellow Sea on a Meteorological Research Vessel, GISANG 1
Park, Minsu; Yum, Seong Soo; Kim, Najin; Cha, Joo Wan; Ryoo, Sang Boom;
  PDF(new window)
Total number concentration of aerosols larger than 10 nm (), 3 nm (), and cloud condensation nuclei () were measured during four different ship cruises over the Yellow Sea. Average values of and at 0.6% supersaturation were 6914 and , respectively, and the minimum value of was , suggesting significant anthropogenic influence even at relatively clean marine environment. Although and increased near the coast due to anthropogenic influence, was relatively constant and therefore ratio tended to decrease, suggesting that coastal aerosols were relatively less hygroscopic. In general , , and during the cruises seemed to be significantly influenced by wet scavenging effects (e.g. fog) and boundary layer height variation. Only one new particle formation (NPF) event was observed during the measurement period. Interestingly, the NPF event occurred during a dust storm event and spatial scale of the NPF event was estimated to be larger than 100 km. These results demonstrate that aerosol and CCN concentration over the Yellow Sea can vary due to various different factors.
Aerosol number concentration;CCN number concentration;Yellow Sea;ship measurement;new particle formation;
 Cited by
Albrecht, B. A., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227-1230. crossref(new window)

Andreae, M. O., and D. Rosenfeld, 2008: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 13-41. crossref(new window)

Boy, M., and M. Kulmala, 2002: Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters. Atmos. Chem. Phys., 2, 1-16.

Davidson, C. I., R. F. Phalen, and P. A. Solomon, 2005: Airborne Particulate Matter and Human Health: A review. Aerosol Sci. Tech., 39, 737-749. crossref(new window)

Hamed, A., H. Korhonen, S. L. Sihto, J. Joutsensaari, H. Jarvinen, T. Petaja, F. Arnold, T. Nieminen, M. Kulmala, and J. N. Smith, 2011: The role of relative humidity in continental new particle formation. J. Geophys. Res., 116, D03202.

Kim, J. H., M. Park, S. Shim, and S. S. Yum, 2012: On the contrast of aerosol size distribution and cloud condensation nuclei concentrations between the east and the west of the Korean Penisula. Atmosphere, 22, 87-96 (in Korean). crossref(new window)

Kim, J. H., S. S. Yum, S. Shim, S.-C. Yoon, J. G. Hudson, J. Park, and S.-J. Lee, 2011: On aerosol hygroscopicity, cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009. Atmos. Chem. Phys., 11, 12627-12645. crossref(new window)

Kim, J. H., S. S. Yum, S. Shim, W. J. Kim, M. Park, J. Kim, M. Kim, and S. C. Yoon, 2014: On the submicron aerosol distributions and CCN number concentrations in and around the Korean Peninsula. Atmos. Chem. Phys., 14, 8763-8779. crossref(new window)

Kim, J. H., S. S. Yum, Y.-G. Lee, and B.-C. Choi, 2009: Ship measurements of submicron aerosol size distributions over the Yellow Sea and the East China Sea. Atmos. Res., 93, 700-714. crossref(new window)

Kim, Y., S.-C. Yoon, S.-W. Kim, K.-Y. Kim, H.-C. Lim, and J. Ryu, 2013: Observation of new particle formation and growth events in Asian continental outflow. Atmos. Environ., 64, 160-168. crossref(new window)

Kulmala, M., H. Vehkamaki, T. Petaja, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. McMurry, 2004: Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci., 35, 143-176. crossref(new window)

Kulmala, M., and Coauthors, 2013: Direct observations of atmospheric aerosol nucleation. Science, 339, 943-946. crossref(new window)

Lee, Y.-G., C.-H. Cho, and M.-S. Kim, 2008: Developing a method for detecting the asian dust event among high PM10 events using aerodynamic particle sizer (APS). Atmosphere, 18, 25-32 (in Korean).

Liu, S., and X.-Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 5790-5809. crossref(new window)

Noone, K. J., and Coauthors, 1992: Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. Tellus B, 44, 489-504. crossref(new window)

Pirjola, L., M. Kulmala, M. Wilck, A. Bischoff, F. Stratmann, and E. Otto, 1999: Effects of aerosol dynamics on the formation of sulphuric acid aerosols and cloud condensation nuclei. J. Aerosol Sci., 30, 1079-1094. crossref(new window)

Ramanathan, V., P. Crutzen, J. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119-2124. crossref(new window)

Rolph, G. D. 2016: Real-time Environmental Applications and Display sYstem (READY). [Available online at].

Rose, D., S. S. Gunthe, E. Mikhailov, G. P. Frank, U. Dusek, M. O. Andreae, and U. Poschl, 2008: Calibration and measurement uncertainties of a continuousflow cloud condensation nuclei counter (DMTCCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys., 8, 1153-1179. crossref(new window)

Sasakawa, M., A. Ooki, and M. Uematsu, 2003: Aerosol size distribution during sea fog and its scavenge process of chemical substances over the northwestern North Pacific. J. Geophysic. Res., 108, 4120, doi:10.1029/2002JD002329. crossref(new window)

Schwartz, S. E., R. J. Charlson, R. A. Kahn, J. A. Ogren, and H. Rodhe, 2010: Why hasn't Earth warmed as much as expected? J. Climate, 23, 2453-2464. crossref(new window)

Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds., 2007: Climate Change 2007-The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1056pp.

Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059-2077. crossref(new window)

Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1152. crossref(new window)

Yum, S. S., and J. G. Hudson, 2001: Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res., 106, 15045-15052. crossref(new window)

Yum, S. S., and J. G. Hudson, K. Y. Song, and B.-C. Choi, 2005; Springtime cloud condensation nuclei concentrations on the west coast of Korea, Geophys. Res. Lett., 32, L09814, doi:10.1029/2005GL022641. crossref(new window)

Yum, S. S., G. Roberts, J. G. Kim, K. Song, and D. Kim, 2007: Submicron aerosol size distributions and cloud condensation nuclei concentrations measured at Gosan, Korea, during the Atmospheric Brown Clouds-East Asian Regional Experiment 2005. J. Geophys. Res., 112, D22S32.

Zeng, X., M. A. Brunke, M. Zhou, C. Fairall, N. A. Bond, and D. H. Lenschow, 2004: Marine atmospheric boundary layer height over the eastern pacific: Data analysis and model evaluation. J. Climate, 17, 4159-4170. crossref(new window)