Advanced SearchSearch Tips
Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Interface on Thermal Conductivity of Clad Metal through Thickness Direction for Heat Sink
Kim, Jong-Gu; Kim, Dong-Yong; Kim, Hyun; Hahn, Byung-Dong; Cho, Young-Rae;
  PDF(new window)
A study on thermal properties for a single-layer metal and a 2-ply metal (clad metals) was investigated for the application of heat sink. For the single-layer metal, a stainless steel (STS) and an aluminum (Al) were selected. Also, a roll bonded clad metal with STS and Al was chosen for the 2-ply metal. The thermal conductivity of the sample was obtained from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared with the calculated values using the data from the references. For the single-layer metal, measured values for the thermal diffusivity and thermal conductivity were smaller than calculated values. Differences between measured and calculated values were about 6% and 18% for the STS and Al samples, respectively. For the clad metals, however, a large difference (55%) was observed. Here, a relatively small thermal conductivity measured by LFA was due to the existence of a interface between STS and Al in the clad metal. Such a interface reduces the moving velocity of free electrons and phonons in the clad metal. For the development of a high performance heat-issipation module with the multi-layer structure, the control of interface properties which determine thermal properties was confirmed to be important.
thermal diffusivity;thermal conductivity;heat sink;clad metal;
 Cited by
알루미늄 기판에 스크린 인쇄한 AlN 후막의 두께 방향으로 열전도도 평가,김종구;박홍석;김현;한병동;조영래;

마이크로전자및패키징학회지, 2015. vol.22. 4, pp.65-70 crossref(new window)
Evaluation of the cross-plane thermal conductivity of double-layer materials, Composites Part B: Engineering, 2017, 110, 1  crossref(new windwow)
Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction, Journal of the Microelectronics and Packaging Society, 2015, 22, 4, 65  crossref(new windwow)
W. Suh, H. S. Jung, Y. H. Lee, Y. H. Kim and S. H. Choa, "Heat Dissipation Technology of IGBT Module Package", J. Microelectron. Packag. Soc., 21(3), 7 (2014).

S. Kim, "Thermal Management on 3D Stacked IC", J. Microelectron. Packag. Soc., 22(2), 5 (2015). crossref(new window)

I. G. Kim, M. E. Son and Y. S. Kim, "Fabrication of the Cu- STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties", Journal of KWJS, 32(5), 80 (2014).

W. Feng, L. Zhang, Y. Liu, X. Li, L. Cheng and B. Chen, "Thermal Mechanical Properties of SiC/SiC-CNTs Composites Fabricated by CVI Combined with Electrophoretic Deposition", Mater. Sci. Eng., A626, 500 (2015).

S. M. Na, S. I. Go and S. J. Lee, "Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of $Y_2O_2$ Content and Sintering Condition", J. Kor. Ceram. Soc., 48(5), 368 (2011). crossref(new window)

Y. W. Kim, H. C. Park and K. D. Oh, "Effect of AlN Addition on the Thermal Conductivity of Sintered $Al_2O_3$", J. Kor. Ceram. Soc., 33(3), 285 (1996).

G. Kim, K. M. Jung, J. T. Moon and J. H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-Coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014).

J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. S. Noh, J. Park and W. Lee, "Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires", Kor. J. Met. Mater., 48(2), 175 (2010). crossref(new window)

M. Abdel-Rahman, S. Ilahi, M. F. Zia, M. Debbar, N. Yacoubi and B. Ilahi, "Temperature Coefficient of Resistance and Thermal Conductivity of Vanadium Oxide 'Big Mac' Sandwich Structure", Infrared Phys. Technol., 71, 127 (2015). crossref(new window)

ASM International Handbook Committee, "Properties and Selection: Nanoferrous Alloys and Special-Purpose Materials", Metals Handbook 10th Ed., Vol. 2, ASM International, Ohio (1990) from

J. M. Holt, "Structure Alloys Handbook", Handbook, CINDAS/Purdue University, Indiana (1996) from

D. Peckner and I. M. Bernstein, "Handbook of Stainless Steels", in Handbook, McGraw-Hill Book Company, New York (1997) from

F. Cardarelli, "Materials Handbook", in Handbook 2nd Ed., Springer-Verlag, London (2008) from

C. J. H. Helmereich, R. Corbin and S. M. McDeavitt, "Measurement of Thermal Diffusivity of Depleted Uranium Metal Microspheres", J. Nucl. Mater., 446, 100 (2014). crossref(new window)

K. Kuniya, H. Arkawa, T. Kanai and A. Chiba, "Thermal Conductivity, Electrical Conductivity and Specific Heat of Copper-Carbon Fiber Composites", Trans. Japan Inst. Metals, 28(10), 819 (1987). crossref(new window)

D. R. Askeland and P. P. Phule, "The Science and Engineering of Materials 5th Ed." (in Korean), C. G. Kang, S. M. Koo, J. H. Kim, Y. W. Seo, K. Y. Son, K. S. Lee, J. H. Lee and H. C. Lee, Eds, pp. 791-806, Scitech Media, Seoul (2008).

J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee and Y. R. Cho, "Effect of Annealing on the Mechanical and Interface Properties of Stainless Steel/Aluminum/Copper Clad- Metal Sheets", J. Mater. Process. Technol., 187-188, 546 (2007). crossref(new window)

H. R. Akramifard, H. Mirzadeh and M. H. Parsa, "Cladding of Aluminum on AISI 304L Stainless Steel by Cold Roll Bonding: Mechanism, Microstructure and Mechanical Properties", Mater. Sci. Eng., A613, 232 (2014).

H. Samadi and E. Gracia, "Thermal Conductivity of Plasma Sprayed Forsterite/Mullite Coatings", Ceram. Inter., 40, 13995 (2014). crossref(new window)