JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication of Monolithic Spectrometer Module Based on Planar Optical Waveguide Platform using UV Imprint Lithography
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Monolithic Spectrometer Module Based on Planar Optical Waveguide Platform using UV Imprint Lithography
Oh, Seung hun; Jeong, Myung yung; Kim, Hwan gi; Choi, Hyun young;
  PDF(new window)
 Abstract
This paper presents integrated polymeric spectrometer module which offers compact size, easily-fabricated structure and low cost. The proposed spectrometer module includes the nano diffraction grating with non-uniform pitch and planar optical waveguide with concave mirror to be fabricated by UV imprint lithography. To increase the reflection efficiency, we designed the nano diffraction grating with triangular profiles. The polymeric planar spectrometer includes a spectral bandwidth of 700 nm, resolution of 10 nm and precision below 5 nm. This polymeric planar spectrometer is well-suited for sensor system.
 Keywords
Spectrometer module;UV imprint lithography;Nano diffraction grating;Planar optical waveguide;
 Language
Korean
 Cited by
 References
1.
S. Babin, C. Peroz, A. Bugrov, S. Dhuey and S. Cabrini, "Fabrication of novel digital optical spectrometer on chip", J. Vac. Sci. Technol. B, 27(6), 3187 (2009). crossref(new window)

2.
J. Hoja and Grzegorz Lentka, "An analysis of a measurement probe for a high impedance spectrscopy analyzer", Journal of the International Measurement Confederation, 41(1), 65 (2008).

3.
V. Galyanin, A. Melenteva and A. Bogomolov, "Selecting optimal wavelength intervals for an optical sensor", Sensors and Actuators B, 218, 97 (2015). crossref(new window)

4.
K. Wu, F. Li and Y. Yang, "Sensitive detection of $CO_2$ concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy", Applied Physics B, 117(2), 659 (2014). crossref(new window)

5.
T. H. Kim, H. J. Kong and T. H. Kim, "Design and fabrication of a 900-1700 nm hyper-spectral imaging spectrometer", Optics Communications, 283, 355 (2010). crossref(new window)

6.
S. C. Truxal, K. Kurabayashi and Y. C. Tung, "Design of a MEMS Tunable Polymer Grating for Single Detector Spectroscopy", Journal of Optomechatronics, 2(2), 75 (2008). crossref(new window)

7.
S. M. Azmayesh-Fard, L. Lam, A. Melnyk and R. G. DeCorby, "Design and fabrication of a planar PDMS transmission grating microspectrometer", Optics Express, 21, 11889 (2013). crossref(new window)

8.
A. Nitkowski, K. Preston, N. Sherwood-Droz, B. S. Schmidt and A. R. Hajian, "On-chip spectrometer for low-cost optical coherence tomography", SPIE, 8934, 89340F (2014).

9.
J. W. Kim, S. U. Cho and M. Y. Jeong, "A Study on optical characteristic of nano metal grid polarizer film with different deposition thickness", J. Microclectron. Packag. Soc., 22(1), 63 (2015). crossref(new window)

10.
T. H. Kim, S. H. Huh and M. Y. Jeong, "Fabrication for optical layer and packaging technology of optical PCB", J. Microclectron. Packag. Soc., 22(1), 1 (2015).