Advanced SearchSearch Tips
Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition
Hong, Hee Kyeung; Heo, Jaeyeong;
  PDF(new window)
To improve the efficiency of the Si solar cell, high minority carrier life time is required. Therefore, the passivation technology is important to eliminate point defects on the silicon surface, causing the loss of minority carrier recombination. PECVD or post-annealing of thermally-grown is commonly used to form the passivation layer, but a high-temperature process and low thermal stability is a critical factor of low minority carrier lifetime. In this study, atomic layer deposition was used to grow the passivation layer at low temperature process. was selected as a passivation layer which has a low surface recombination velocity because of the fixed charge density. For the high charge density, an improved minority carrier lifetime, and a low surface recombination, nitrogen was doped in the thin film and the improvement of passivation was studied.
Atomic layer deposition;Silicon solar cell;Passivation layer;Minority carrier lifetime;Recombination;Defects;
 Cited by
A. W. Blakers, A. Wang, A. M. Milne, J. Zhao and M. A. Green, "22.8% Efficient Silicon Solar Cell", Appl. Phys. Lett., 55, 1363 (1989). crossref(new window)

G. K. Chang, Y. K. Lim and J. C. Jeong, "Textured Surface Epitaxial Base Silicon Solar Cell", J. Microelectron. Packag. Soc., 10(2), 33 (2003).

T.-K. Woo, Y. H. Kim, H.-S. Ahn and S.-Il Kim, "A Study of Reflectance of Textured Crystalline Si Surface Fabricated by using Preferential Aqueous Etching and Grinding Process", J. Microelectron. Packag. Soc., 16(3), 61 (2009).

S. M. George, "Atomic Layer Deposition: An Overview", Chem. Rev., 110, 111 (2010). crossref(new window)

J. Schmidt, A. Merkle, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels and R. Brendel, "Atomic-layer-deposited Aluminum Oxide for the Surface Passivation of High-efficiency Silicon Solar Cells", Photovoltaic Specialists Conference 2008 (PVSC'08), 33rd IEEE (2008).

R. K. Ahrenkiel and S. W. Johnston, "An Optical Technique for Measuring Surface Recombination Velocity", Sol. Energy Mater. Sol. Cells, 93(5), 645 (2009). crossref(new window)

S. K. Oh, H. S. Shin, K. S. Jeong, M. Li, H. Lee, K. Han, Y. Lee, G. W. Lee and H. D. Lee, "A Novel Atomic Layer Deposited $Al_2O_3$ Film with Diluted $NH_4OH$ for High-Efficient c-Si Solar Cell", J. Semicond. Technol. Sci., 14(1), 40 (2014). crossref(new window)

M D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, "Low-Temperature $Al_2O_3$ Atomic Layer Deposition", Chem. Mater., 16(4), 639 (2004). crossref(new window)

F. K. Urban, "Ellipsometer Measurement of Thickness and Optical Properties of Thin Absorbing Films", Appl. Surf. Sci., 33, 934 (1988).

S. Kontermann, A. Wolf, D. Reinwand, A. Grohe, D. Biro and R. Preu, "Optimizing Annealing Steps for Crystalline Silicon Solar Cells with Screen Printed Front Side Metallization and an Oxide-Passivated Rear Surface with Local Contacts", Prog. Photovoltaics Res. Appl., 17(8), 554 (2009). crossref(new window)

S. Kontermann, M. Horteis, M. Kasemann, A. Grohe, R. Preu, E. Pink and T. Trupke, "Physical Understanding of the Behavior of Silver Thick-film Contacts on n-type Silicon Under Annealing Conditions", Sol. Energy Mater. Sol. Cells, 93(9), 1630 (2009). crossref(new window)