Advanced SearchSearch Tips
Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure
Oh, Hyun-Ah; Park, Donghyeun; Shin, Soo Jin; Oh, Tae Sung;
  PDF(new window)
In order to develop stretchable substrate technology for stretchable devices, locally stiffness-variant stretchable substrates were processed with two polydimethylsiloxane elastomers of different stiffnesses and their deformation behavior was characterized. Low-stiffness substrate matrix and embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to a configuration of 6.5 cm length, 0.4 cm thickness, and 2.5 cm width. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.13~0.33 MPa by embedding a Sylgard 184 island of 1 cm width and 1~6 cm length into the center part of the Dragon Skin 10 substrate matrix. The elastic modulus of a stretchable substrate was improved to 0.16~0.2 MPa by embedding a Sylgard 184 island of 4 cm length and 0.5~1.5 cm width and to 0.1421~0.154 MPa by embedding a Sylgard 184 island of 2 cm length and 0.5~1.5 cm width. With increasing the tensile strain of a stretchable substrate, deformation restriction of the locally stiffness-variant Sylgard 184 island was further enhanced due to substantial increase in the strength difference between Sylgard 184 and Dragon 10 at large strain.
Stretchable packaging;stretchable substrate;PDMS;stiffness;elastic modulus;
 Cited by
J. Y. Choi, D. W. Park and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). crossref(new window)

H. A. Oh, D. Park, K. S. Hahn and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", to be published in J. Microelectron. Packag. Soc. (2015).

J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013).

M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis and P. H. M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).

J. H. Ahn, H. Lee and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).

J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). crossref(new window)

T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). crossref(new window)

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). crossref(new window)

M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008). crossref(new window)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). crossref(new window)

J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).

D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). crossref(new window)

J. Y. Choi, D. H. Park and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012).

S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). crossref(new window)

Y. K. Son, J. E. Kim and I. Y. Cho, "Trends on Wearable Computer Technology and Market", Electronics and Telecommunications Trends, 23, 79 (2008).

J. E. Kim, H. T. Jeong and I. Y. Cho, "Trend in Digital Clothing Technology", Electronics and Telecommunications Trends, 24, 20 (2009).

S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015).

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li and Z. Suo, "Stiff Subcritical Islands of Diamondlike Carbon for Stretchable Electronics", J. Appl. Phys., 100, 014913 (2006). crossref(new window)

Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Hupport, B. Morey and R. Ghaffari, "Archipelago Platform for Skin-mounted Wearable and Stretchable Electronics", Proc. 64th Electronic Components and Technology Conference (ECTC), Orlando, 145, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2014).

R. Li, M. Li, Y. Su, J. Song and X. Ni, "An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics", Soft Matt., 9, 8476 (2013). crossref(new window)

C. R. Barrett, A. S. Tetelman and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).

S. Popovics, "Quantitative Deformation Model for Two-phase Composites Including Concrete", Mater. Struct., 20, 171 (1987). crossref(new window)

S. Popovics and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).