Advanced SearchSearch Tips
Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications
Oh, Hyun-Ah; Park, Donghyeun; Han, Kee-Sun; Oh, Tae Sung;
  PDF(new window)
In order to apply to stretchable electronics packaging, locally stiffness-variant stretchable substrates consisting of island structure were fabricated by combining two polydimethylsiloxane elastomers of different stiffnesses and their elastic moduli were characterized as a function of the width of the high-stiffness island. The low-stiffness substrate matrix and the embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to be a configuration of 6.5-cm length, 0.4-cm thickness, and 2.5-cm width, in which a high-stiffness Sylgard 184 island, of 4-cm length, 0.2-cm thickness, and 0.5~1.5-cm width, was embedded. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.16 MPa by incorporating the Sylgard 184 island of 0.5-cm width to Dragon Skin 10 substrate matrix. The elastic modulus was further improved to 0.18 MPa and 0.2 MPa with increasing the Sylgard 184 island width to 1.0 cm and 1.5 cm, which were in good agreement with values estimated by combining the Voigt structure of isostrain and the Reuss structure of isostress.
Stretchable packaging;stretchable substrate;PDMS;stiffness;elastic modulus;
 Cited by
섬(Island) 구조로 이루어진 강성도 국부변환 신축성 기판의 변형 거동,오현아;박동현;신수진;오태성;

마이크로전자및패키징학회지, 2015. vol.22. 4, pp.117-123 crossref(new window)
Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-Chip Bonding on Compliant Substrates, MATERIALS TRANSACTIONS, 2017, 58, 8, 1217  crossref(new windwow)
J. Y. Choi, D. W. Park and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). crossref(new window)

J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013).

M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis and P. H. M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).

J. H. Ahn, H. Lee and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).

J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). crossref(new window)

T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).

T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). crossref(new window)

D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). crossref(new window)

M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008). crossref(new window)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). crossref(new window)

J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).

D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). crossref(new window)

J. Y. Choi, D. H. Park and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012).

S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015).

A. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand and S. Yunus, "Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer", Langmuir, 26(5), 3372 (2010). crossref(new window)

I. D. Johnston, D. K. McCluskey, C. K. L. Tan and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014). crossref(new window)

J. C. Lotters, W. Olthuis, P. H. Veltink and P. Bergveld, The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsilicone for Sensor Applications", J. Micromech. Microeng., 7, 145 (1997). crossref(new window)

S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). crossref(new window)

Y. K. Son, J. E. Kim and I. Y. Cho, "Trends on Wearable Computer Technology and Market", Electronics and Telecommunications Trends, 23, 79 (2008).

J. E. Kim, H. T. Jeong and I. Y. Cho, "Trend in Digital Clothing Technology", Electronics and Telecommunications Trends, 24, 20 (2009).

T. Linz, R. Vieroth, C. Dils, M. Koch, T. Braun, K. F. Becker, C. Kallmayer and S. M. Hong, "Embroidered Interconnections and Encapsulation for Electronics in Textiles for Wearable Electronics Applications", Adv. Sci. Technol., 60, 85 (2008). crossref(new window)

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li and Z. Suo, "Stiff Subcritical Islands of Diamondlike Carbon for Stretchable Electronics", J. Appl. Phys., 100, 014913 (2006). crossref(new window)

Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Hupport, B. Morey and R. Ghaffari, "Archipelago Platform for Skin-mounted Wearable and Stretchable Electronics", Proc. 64th Electronic Components and Technology Conference (ECTC), Orlando, 145, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2014).

R. Li, M. Li, Y. Su, J. Song and X. Ni, "An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics", Soft Matt., 9, 8476 (2013). crossref(new window)

F. Schneider, T. Fellner, J. Wilde and U. Wallrabe, "Mechanical Properties of Silicones for MEMS", J. Micromech. Microeng., 18, 065008 (2008). crossref(new window)

T. K. Kim, J. K. Kim and O. C. Jeong, "Measurement of Nonlinear Mechanical Properties of PDMS Elastomer", Microelectron. Eng., 88, 1982 (2011). crossref(new window)

E. A. Wilder, S. Guo, S. Lin-Gibson, M. J. Fasolka and C. M. Stafford, "Measuring the Modulus of Soft Polymer Network via a Buckling-Based Metrology", Macromolecules, 39, 4138 (2009).

Z. Wang, A. A. Volinsky and N. D. Gallant, "Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument", J. Appl. Polym. Sci., 131(22), (2014).

J. H. Seo, K. Sakai and N. Yui, "Adsorption State of Fibronectin on Poly(dimethylsiloxane) Surfaces with Varied Stiffness Can Dominate Adhesion Density of Fibroblasts", Acta Biomater., 9, 5493 (2013). crossref(new window)

C. R. Barrett, A. S. Tetelman and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).

S. Popovics, "Quantitative Deformation Model for Two-phase Composites Including Concrete", Mater. Struct., 20, 171 (1987). crossref(new window)

S. Popovics and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).