JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process
Mahadik, D.B.; Jung, Hae-Noo-Ree; Lee, Yoon Kwang; Lee, Kyu-Yeon; Park, Hyung-Ho;
  PDF(new window)
 Abstract
The flexible and superhydrophobic properties of silica aerogels are extremely important material for thermal insulation and oil spill cleanup applications for their long-term use. Flexible silica aerogels were synthesized by using a two-step sol-gel process with precursors, methyltrimethoxysilane (MTMS) followed by supercritical drying. Silica aerogels were prepared at different molar ratio of methanol to MTMS (M). It was observed that the silica aerogels prepared at M
 Keywords
Silica aerogel;flexible;hydrophobic;methytrimethoxysilane;sol-gel process;
 Language
English
 Cited by
 References
1.
M. A. Aegerter, N. Leventis, and M. Koebel, Aerogels Handbook, Springer, New York (2011).

2.
A. V. Rao, S. D. Bhagat, H. Hirashima, and G. M. Pajonk, "Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor", J. Colloid and Interface Sci., 300(1), 279 (2006). crossref(new window)

3.
G. C. Bond and S. Flamerz, "Structure and reactivity of titania- supported oxides. Part 3: reaction of isopropanol over vanadia-titania catalysts", Appl. Catal., 33, 219 (1987). crossref(new window)

4.
T. M. Tillotson and L. W. Hrubesh, "Transparent ultralowdensity silica aerogels prepared by a two-step sol-gel process", J. Non-Cryst. Solids, 145, 44 (1992). crossref(new window)

5.
D. Y. Nadargi, S. S. Latthe, H. Hirashima, and A. V. Rao, "Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels", Microporous Mesoporous Mater., 117, 617 (2009). crossref(new window)

6.
J. P. Randall, M. A. B. Meador, and S. C. Jana, "Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis(trimethoxysilylpropyl)amine as silane precursors", J. Mater. Chem. A, 1, 6642 (2013). crossref(new window)

7.
J. S. Lee, J. H. Yim, and Y. S. Ko, "Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization", J. Microelectron. Packag. Soc., 36(1), 111 (2012).

8.
D. Y. Han, J. H. Park, Y. J. Lee, J. H. Lee, S. R. Kim, and Y. H. Kim, "Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film", J. Microelectron. Packag. Soc., 20(11), 600 (2010).

9.
A. Fidalgo, J. P. S. Farinha, J. M. G. Martinho, and L. M. Ilharco, "Flexible hybrid aerogels prepared under subcritical conditions", J. Mater. Chem. A, 1, 12044 (2013). crossref(new window)

10.
D. B. Mahadik, A. V. Rao, A. P. Rao, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels", J. Colloid Interface Sci., 356, 298 (2011). crossref(new window)

11.
D. P. Mohite, S. Mahadik-Khanolkar, H. Luo, H. Lu, C. S. Leventis, and N. Leventis, "Polydicyclopentadiene aerogels grafted with PMMA: II. Nanoscopic characterization and origin of macroscopic deformation", Soft Matter, 9, 1531 (2013). crossref(new window)

12.
L. A. Capadona, M. A. B. Meador, A. Alunni, E. F. Fabrizio, P. Vassilaras, and N. Leventis, "Flexible, low-density polymer crosslinked silica aerogels", Polymer, 47, 5754 (2006). crossref(new window)

13.
M. S. Kavale, D. B. Mahadik, V. G. Parale, P. B. Wagh, S. C. Gupta, A. V. Rao, and H. C. Barshilia, "Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent", Appl. Surf. Sci., 258, 158 (2011). crossref(new window)

14.
A. P. Rao, A. V. Rao, and G. M. Pajonk, "Hydrophobic and Physical Properties of the Two Step Processed Ambient Pressure Dried Silica Aerogels with Various Exchanging Solvents", J. Sol-Gel Sci. Technol., 36, 285 (2005). crossref(new window)

15.
Y. Duan, S. C. Jana, A. M. Reinsel, B. Lama, and M. P. Espe, "Surface Modification and Reinforcement of Silica Aerogels Using Polyhedral Oligomeric Silsesquioxanes", Langmuir, 28(43), 15362 (2012). crossref(new window)

16.
W. C. Li, A. H. Lu, and S. C. Guo, "Control of Mesoporous Structure of Aerogels Derived from Cresol-Formaldehyde", J. Colloid Interface Sci., 254, 153 (2002). crossref(new window)

17.
L. Zhong, X. Chen, H. Song, K. Guoa, and Z. Hu, "Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane", New J. Chem., 39, 7832 (2015). crossref(new window)

18.
H. Maleki, L. Duraes, and A. Portugal, "Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications", Microporous Mesoporous Mater., 197, 116 (2014). crossref(new window)