Advanced SearchSearch Tips
Trends of Researches and Technologies of Electronic Packaging Using Graphene
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Trends of Researches and Technologies of Electronic Packaging Using Graphene
Ko, Yong-Ho; Choi, Kyeonggon; Kim, Sang Woo; Yu, Dong-Yurl; Bang, Junghwan; Kim, Taek-Soo;
  PDF(new window)
This paper reports the trends of researches and technologies of electronic packaging using graphene. Electronic packaging is to provide the signal and electrical current among electronic components, to remove the heat in electronic systems or components, to protect and support the electronic components from external environment. As the required functions and performances of electronic systems or components increase, the electronic packaging has been intensively attracted attention. Therefore, technologies such as miniaturization, high density, Pb-free material, high reliability, heat dissipation and so on, are required in electronic packaging. Recently, graphene, which is a single two-dimensional layer of carbon atoms, has been extensively investigated because of its superior mechanical, electrical and thermal properties. Until now, many studies have been reported the applications using graphene such as flexible display, electrode, super capacitor, composite materials and so on. In this paper, we will introduce and discuss various studies on recent technologies of electronic packaging using graphene for solving the required issues.
Electronic packaging;Graphene;Electronic system;Pb-free;Reliability;
 Cited by
유연기판 위에 제작된 Silver Nanowire 필름의 기계 및 전기적 신뢰성 연구,이요셉;이원재;박진영;좌성훈;

마이크로전자및패키징학회지, 2016. vol.23. 4, pp.93-99 crossref(new window)
W. S. Basca, "A Theorist's Pencil and One Layer of Carbon Atoms, Graphene", from (2007).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 306, 666 (2004). crossref(new window)

A. K. Geim and K. S. Novoselov, "The rise of graphene", Nature, 6, 183 (2007). crossref(new window)

C. Lee, X. Wei, J. W. Kysar and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321, 385 (2008). crossref(new window)

S. H. Lee , D. H. Lee , W. J. Lee and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Adv. Funct. Mater., 21, 1338 (2011). crossref(new window)

K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, "A roadmap for graphene", Nature, 490, 192 (2012). crossref(new window)

D. R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, "Experimental Review of Graphene", Condens. Matter Phys., 2012, 1 (2012).

V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, "Graphene based materials: Past, present and future", Mater. Sci., 56, 1178 (2011).

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, "Practical Chemical Sensors from Chemically Derived Graphene," ACS Nano, 3, 301 (2009). crossref(new window)

R. Prasher, "Graphene Spreads the Heat," Science, 328, 185 (2010). crossref(new window)

T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, "Recent Advances in Graphene-based Biosensors," Biosens. Bioelectron., 26, 4637 (2011). crossref(new window)

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong and J. H. Ahn, "Wafer-Scale Synthesis and Transfer of Graphene Films", Nano Lett., 10, 490 (2010). crossref(new window)

Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, "Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films", ACS Nano, 4, 1963 (2010). crossref(new window)

H. Kim, A. A. Abdala and C. W. Macosko, "Graphene/Polymer Nanocomposites", Macromolecules, 43, 6515 (2010). crossref(new window)

A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander and J. Kinaret, "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, 7, 4598 (2015). crossref(new window)

J. H. Lau, "Low Cost Flip Chip Technologies: for DCA, WLCSP, and PBGA assemblies", pp.1-2, McGraw-Hill, New York (2000).

S. K. Kang and A. K. Sarkhel, "(Pb)-Free Solders for Electronic Packaging", J. Electron. Mater., 23(8), 701 (1994). crossref(new window)

M. Abtew and G. Selvaduray, "Lead-free Solders in Microelectronics", Mater. Sci. Eng. R, 27(5), 95 (2000). crossref(new window)

A. Sharma, H. R. Sohn and J. P. Jung, "Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy", Metall. Mater. Trans. A, 47A, 494 (2016).

L. C. Tsao, "Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging", J. Alloys Compd., 509, 8441 (2011). crossref(new window)

A. K. Gain, Y. C. Chan and W. K. C. Yung, "Effect of additions of $ZrO_2$ nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads", Microelectron. Reliab., 51, 2306 (2011). crossref(new window)

M. G. Cho, S. K. Kang, D. Y. Shin and H. M. Lee, "Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging", J. Electron. Mater., 36(11), 1501 (2007). crossref(new window)

X. D. Liu, Y. D. Han, H. Y. Jing, J. Wei and L. Y. Xu, "Effect of graphene nanosheets reinforcement on the performance of Sn-Ag-Cu lead-free solder", Mater. Sci. Eng. A, 562, 25 (2013). crossref(new window)

M. Sobhy, A. M. El-Refai and A. Fawzy, "Effect of Graphene Oxide Nano-Sheets (GONSs) on thermal, microstructure and stress-strain characteristics of Sn-5 wt% Sb-1 wt% Ag solder alloy", J. Mater. Sci.: Mater. Electron., 27, 2349 (2016). crossref(new window)

L. Xu, L. Wang, H. Jing, X. Liu, J. Wei and Y. Han, "Effects of graphene nanosheets on interfacial reaction of Sn-Ag-Cu solder joints", J. Alloys Compd., 650, 475 (2015). crossref(new window)

D. Ma and P. Wu, "Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets", J. Alloys. Compd., 671, 127 (2016). crossref(new window)

X. Hua, Y. C. Chan, K. Zhang and K. C. Yung, "Effect of graphene doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis", J. Alloys. Compd., 580, 162 (2013). crossref(new window)

L. Y. Xu, Z. K. Zhang, H. Y. Jing, J. Wei and Y. D. Han, "Effect of graphene nanosheets on the corrosion behavior of Sn-Ag-Cu solders", J. Mater Sci: Mater. Electron., 26, 5625 (2015). crossref(new window)

S. W. Jeong, J. H. Kim and H. M. Lee, "Effect of Cooling Rate on Growth of the Intermetallic Compound and Fracture Mode of Near-Eutectic Sn-Ag-Cu/Cu Pad: Before and After Aging", J. Electron. Mater., 33(12), 1530 (2004). crossref(new window)

H. K. Lee, M. H. Chun, Y. C. Chu and K. S. Oh, "A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish", J. Microelectron. Packag. Soc., 22(3), 51 (2015).

S. H. Huh, J. H. Lee and S. J. Ham, "Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 1. Effects of thickness and roughness of electroless Ni-P deposit", J. Microelectron. Packag. Soc., 21(3), 43 (2014).

T. Y. Lee, K. H. Kim, J. H. Bang, N. S. Park, M. S. Kim and S. Yoo, "Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP", J. Microelectron. Packag. Soc., 21(3), 25 (2014).

Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428 (2004). crossref(new window)

A. Sharif and Y. C. Chan, "Investigation of interfacial reactions between Sn-Zn solder with electrolytic Ni and electroless Ni(P) metallization", J. Alloys Compd., 440, 117 (2007). crossref(new window)

C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, "Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni", J. Electron. Mater., 31(6), 584 (2002). crossref(new window)

Y. K. Jee, Y. H. Ko and J. Yu, "Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad", J. Mater. Res., 22(7), 1879 (2007). crossref(new window)

Y. K. Jee, Y. H. Ko and J. Yu, "Effects of Zn addition on the drop reliability of Sn-3.5Ag-xZn/Ni(P) solder joints", J. Mater. Res., 22(10), 2776 (2007). crossref(new window)

Y. M. Kim, K. M. Harr and Y. H. Kim, "Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate", Electron. Mater. Lett., 6(4), 151 (2010). crossref(new window)

Y. H. Ko, J. D. Lee, T. Yoon, C. W. Lee and T. S. Kim, "Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene", ACS Appl. Mater. Interfaces, 8, 5679 (2016). crossref(new window)

K. Lee, K. S. Kim and K. Suganuma, "Electro-migration Phenomenon in Flip-chip Packages", J. Microelectron. Packag. Soc., 17(4), 11 (2010).

J. H. Bong, S. J. Yoon, A. Yoon, W. S. Hwang and B. J. Cho, "Ultrathin graphene and graphene oxide layers as a diffusion barrier for advanced Cu metallization", Appl. Phys. Lett., 106, 0632112 (2015).

C. G. Kang, S. K. Lim, S. Lee, S. K. Lee, C. Cho, Y. G. Lee, H. J. Hwang, Y. Kim, H. J. Choi, S. H. Choe, M. H. Ham and B. H. Lee, "Effects of multi-layer graphene capping on Cu interconnects", Nanotechnology, 24, 115707 (2013). crossref(new window)

S. J. Yoon, A. Yoon, W. S. Hwang, S. Y. Choi and B. J. Cho, "Improved Electromigration-Resistance of Cu Interconnects by Graphene-Based Capping Layer", Proc. 2015 Symposium on VLSI Technology, Kyoto, T124, IEEE (2015).

C. P. Wong, J. Xu, L. Zhu, Y. Li, H. Jiang, Y. Sun, J. Lu and H. Dong, "Recent Advances on Polymers and Polymer Nanocomposites for Advanced Electronic Packaging Applications", Proc. 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, Shanghai, 1, IEEE (2005).

J. Kim, B. S. Yim, J. M. Kim and J. Kim, "The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs)", Microelectron. Reliab., 52, 595 (2012). crossref(new window)

N. W. Pu, Y. Y. Peng, P. C. Wang, C. Y. Chen, J. N. Shi, Y. M. Liu, M. D. Ger and C. L. Chang, "Application of nitrogendoped graphene nanosheets in electrically conductive adhesives", Carbon, 67, 449 (2014). crossref(new window)

S. A. Ju, K. Kim, J. H. Kim and S. S. Lee, "Graphene-Wrapped Hybrid Spheres of Electrical Conductivity", ACS Appl. Mater. Interfaces, 3, 2904 (2011). crossref(new window)

K. M. F. Shahil and A. A. Balandin, "Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials", Solid State Commun., 152, 1331 (2012). crossref(new window)

K. M. F. Shahil and A. A. Balandin, "Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials", Nano Lett., 12(2), 861 (2012). crossref(new window)

X. Zhang, K. K. Yeung, Z. Gao, J. Li, H. Sun, H. Xu, K. Zhang. M. Zhang, Z. Chen, M. M. F. Yuen and S. Yang, "Exceptional thermal interface properties of a three-dimensional graphene foam", Carbon, 66, 201 (2014). crossref(new window)

W. P. S. Saw and M. Mariatti, "Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications", J. Mater. Sci.: Mater. Electron., 23, 817 (2012). crossref(new window)

Z. Gao, Y. Zhang, Y. Fu, M. M. F. Yuen and J. Liu, "Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots", Carbon, 61, 342 (2013). crossref(new window)