Advanced SearchSearch Tips
Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging
Kim, Cheolgyu; Lee, Tae-Ik; Kim, Taek-Soo;
  PDF(new window)
This paper presents an overview of selected advanced measurement technologies for the mechanical properties of polymers used for flexible and stretchable electronic packaging. Over the years, a variety of flexible and stretchable electronics have been developed due to their potential applications for next generation IT industry. To achieve more flexible and wearable devices for practical applications, the usage of polymeric components has been increased significantly. Therefore, accurate measurement of mechanical properties of the polymers is necessary in order to design mechanically reliable devices. However, the measurement has been challenging due to the soft nature and thin applications of polymers. Here, we describe novel measurement technologies of mechanical properties of polymers for flexible and stretchable electronics.
Flexible electronics;Stretchable electronics;Polymer;Mechanical properties;Measurement technology;
 Cited by
S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu and M. Yun, "Transferred wrinkled $Al_2O_3$ for highly stretchable and transparent graphene-carbon nanotube transistors", Nat. Mater., 12, 403 (2013). crossref(new window)

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz and S. Bauer-Gogonea, "An ultra-lightweight design for imperceptible plastic electronics", Nature, 499, 458 (2013). crossref(new window)

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates and M. McCreary, "Electronic paper: Flexible active-matrix electronic ink display", Nature, 423, 136 (2003).

B. Lahey, A. Girouard, W. Burleson and R. Vertegaal, "Paper-Phone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays", Proc the SIGCHI Conference on Human Factors in Computing Systems. Vancouver, 1303 (ACM) (2011).

H. J. Yen, C. J. Chen and G. S. Liou, "Flexible Multi-Colored Electrochromic and Volatile Polymer Memory Devices Derived from Starburst Triarylamine-Based Electroactive Polyimide", Adv. Funct. Mater., 23, 5307 (2013). crossref(new window)

Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh and W.-F. Su, "Stretchable organic memory: toward learnable and digitized stretchable electronic applications", NPG Asia Materials, 6, e87 (2014). crossref(new window)

M. S. White, M. Kaltenbrunner, E. D. Glowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. Egbe and M. C. Miron, "Ultrathin, highly flexible and stretchable PLEDs", Nat. Photonics, 7, 811 (2013). crossref(new window)

J. Liang, L. Li, X. Niu, Z. Yu and Q. Pei, "Elastomeric polymer light-emitting devices and displays", Nat. Photonics, 7, 817 (2013). crossref(new window)

C.-L. C. Chien, Y.-C. Huang, S.-F. Hu, C.-M. Chang, M.-C. Yip and W. Fang, "Polymer dispensing and embossing technology for the lens type LED packaging", J. Micromech. Microeng., 23, 065019 (2013). crossref(new window)

S. Khan, L. Lorenzelli and R. S. Dahiya, "Technologies for printing sensors and electronics over large flexible substrates: a review", IEEE Sens. J, 15, 3164 (2015). crossref(new window)

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, "A stretchable carbon nanotube strain sensor for human-motion detection", Nat. Nanotechnol., 6, 296 (2011). crossref(new window)

J. E. Carle, M. Helgesen, M. V. Madsen, E. Bundgaard and F. C. Krebs, "Upscaling from single cells to modules-fabrication of vacuum-and ITO-free polymer solar cells on flexible substrates with long lifetime", J Mater. Chem. C Mater. Opt. Electron Devices,, 2, 1290 (2014).

M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci and S. Bauer, "Ultrathin and lightweight organic solar cells with high flexibility", Nat. Commun, 3, 770 (2012). crossref(new window)

A. Gaikwad, A. Zamarayeva, J. Rousseau, H. Chu, I. Derin and D. Steingart, "Highly stretchable alkaline batteries based on an embedded conductive fabric", Adv. Mater., 24, 5071 (2012). crossref(new window)

G. Zhou, F. Li and H.-M. Cheng, "Progress in flexible lithium batteries and future prospects", Energy. Environ. Sci., 7, 1307 (2014). crossref(new window)

NSC, National Standard Coordinator. from

D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao and A. Islam, "Epidermal electronics", Science, 333, 838 (2011). crossref(new window)

D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and Z. Bao, "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes", Nat. Nanotechnol., 6, 788 (2011). crossref(new window)

W.-Y. Chang, T.-H. Fang, H.-J. Lin, Y.-T. Shen and Y.-C. Lin, "A large area flexible array sensors using screen printing technology", J. Display Technol., 5, 178 (2009). crossref(new window)

G. S. Jeong, D.-H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim and S.-H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer", Nat. Commun, 3, 977 (2012). crossref(new window)

P. Bing, X. Hui-min, H. Tao and A. Asundi, "Measurement of coefficient of thermal expansion of films using digital image correlation method", Polym. Test., 28, 75 (2009). crossref(new window)

D. Van den Berg, M. Barink, P. Giesen, E. Meinders and I. Yakimets, "Hygroscopic and thermal micro deformations of plastic substrates for flexible electronics using digital image correlation", Polym. Test., 30, 188 (2011). crossref(new window)

C. Dudescu, A. Botean and M. Hardau, "Thermal expansion coefficient determination of polymeric materials using digital image correlation", Mater Plast, 50, 55 (2013).

Y. Wang and W. Tong, "A high resolution DIC technique for measuring small thermal expansion of film specimens", Opt. Lasers. Eng., 51, 30 (2013). crossref(new window)

M. De Strycker, L. Schueremans, W. Van Paepegem and D. Debruyne, "Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques", Opt. Lasers. Eng., 48, 978 (2010). crossref(new window)

J. A. Diaz, R. J. Moon and J. P. Youngblood, "Contrast enhanced microscopy digital image correlation: a general method to contact-free coefficient of thermal expansion measurement of polymer films", ACS Appl. Mater. Interfaces, 6, 4856 (2014). crossref(new window)

T.-I. Lee, M. S. Kim and T.-S. Kim, "Contact-free thermal expansion measurement of very soft elastomers using digital image correlation", Polym. Test., 51, 181 (2016). crossref(new window)

H. Wang, J. K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski and A. Galeski, "Confined crystallization of polyethylene oxide in nanolayer assemblies", Science, 323, 757 (2009). crossref(new window)

H. Lee, M. Alcoutlabi, J. V. Watson and X. Zhang, "Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries", J. Appl. Polym., 129, 1939 (2013). crossref(new window)

T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong and T.-S. Kim, "Flexible, highly efficient all-polymer solar cells", Nat. Commun, 6 (2015).

Y. Liu, Y.-C. Chen, S. Hutchens, J. Lawrence, T. Emrick and A. J. Crosby, "Directly Measuring the Complete Stress-Strain Response of Ultrathin Polymer Films", Macromolecules, 48, 6534 (2015). crossref(new window)

R. Sondergaard, M. Hosel, D. Angmo, T. T. Larsen-Olsen and F. C. Krebs, "Roll-to-roll fabrication of polymer solar cells", Mater. today, 15, 36 (2012). crossref(new window)

D. Angmo, T. T. Larsen-Olsen, M. Jorgensen, R. R. Sondergaard and F. C. Krebs, "Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration", Adv. Energy Mater., 3, 172 (2013). crossref(new window)

D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, M. Jorgensen, R. Gupta, G. U. Kulkarni and F. C. Krebs, "Scalability and stability of very thin, rollto-roll processed, large area, indium-tin-oxide free polymer solar cell modules", Org. Electron., 14, 984 (2013). crossref(new window)

Y.-J. Hwang, G. Ren, N. M. Murari and S. A. Jenekhe, "n-type naphthalene diimide-biselenophene copolymer for allpolymer bulk heterojunction solar cells", Macromolecules, 45, 9056 (2012). crossref(new window)

A. Facchetti, "Polymer donor-polymer acceptor (all-polymer) solar cells", Mater. Today, 16, 123 (2013). crossref(new window)

J.-H. Kim, A. Nizami, Y. Hwangbo, B. Jang, H.-J. Lee, C.-S. Woo, S. Hyun and T.-S. Kim, "Tensile testing of ultra-thin films on water surface", Nat. Commun, 4 (2013).

T.-I. Lee, C. Kim, M. S. Kim and T.-S. Kim, "Flexural and tensile moduli of flexible FR4 substrates", Polym. Test. (2016). crossref(new window)

J. Jin, J. H. Ko, S. Yang and B. S. Bae, "Rollable Transparent Glass-Fabric Reinforced Composite Substrate for Flexible Devices", Adv. Mater., 22, 4510 (2010). crossref(new window)

H. Y. Kim, J. Jin, S.-H. Ko Park, I.-Y. Eom and B.-S. Bae, "350 C processable low-CTE transparent glass-fabric-reinforced hybrimer film for flexible substrates", J. Inf. Disp., 16, 57 (2015). crossref(new window)

C. Kim, T.-I. Lee, M. S. Kim and T.-S. Kim, "Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates", Polymers, 7, 985 (2015). crossref(new window)

S.-J. Joo, B. Park, D.-H. Kim, D.-O. Kwak, I.-S. Song, J. Park and H.-S. Kim, "Investigation of multilayer printed circuit board (PCB) film warpage using viscoelastic properties measuredby a vibration test", J. Micromech. Microeng, 25,035021 (2015). crossref(new window)