JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Microbial Diversity in Three-Stage Methane Production Process Using Food Waste
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Microbiology
  • Volume 48, Issue 2,  2012, pp.125-133
  • Publisher : The Microbiological Society of Korea
  • DOI : 10.7845/kjm.2012.48.2.125
 Title & Authors
Microbial Diversity in Three-Stage Methane Production Process Using Food Waste
Nam, Ji-Hyun; Kim, Si-Wouk; Lee, Dong-Hun;
  PDF(new window)
 Abstract
Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).
 Keywords
archaeal diversity;bacterial diversity;hydrogenotrophic methanogen;three-stage methane production process;VFA-oxidizing bacteria;
 Language
Korean
 Cited by
1.
Evaluating Feeding of Organic Waste and Stirring Interval to Optimize Anaerobic Digestion,;;

Journal of Biosystems Engineering, 2014. vol.39. 4, pp.366-376 crossref(new window)
1.
Evaluating Feeding of Organic Waste and Stirring Interval to Optimize Anaerobic Digestion, Journal of Biosystems Engineering, 2014, 39, 4, 366  crossref(new windwow)
 References
1.
Angenent, L.T., Sung, S.W., and Raskin, L. 2002. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res. 36, 4648-4654. crossref(new window)

2.
APHA. 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington, D.C., USA.

3.
Bialek, K., Kim, J., Lee, C., Collins, G., Mahony, T., and O'Flaherty, V. 2011. Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res. 45, 1298-1308. crossref(new window)

4.
Briones, A.M., Daugherty, B.J., Angenent, L.T., Rausch, K., Tumbleson, M., and Raskin, L. 2009. Characterization of microbial trophic structures of two anaerobic bioreactors processing sulfate-rich waste streams. Water Res. 43, 4451-4460. crossref(new window)

5.
Chen, S. and Dong, X. 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55, 2257-2261. crossref(new window)

6.
Chun, J., Huq, A., and Colwell, R.R. 1999. Analysis of 16S-23S rRNA intergenic Spacer Regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208.

7.
DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689. crossref(new window)

8.
Demirel, B. and Yenigün, O. 2002. Article first published online: 18 Two-phase anaerobic digestion processes: a review. J. Chem. Technol. Biotechnol. 77, 743-755. crossref(new window)

9.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. crossref(new window)

10.
Felsenstein, J. 2002. PHYLIP (Phylogeny Inference Package) version 3.6a3. Distributed by the author, Department of Genome Sciences, University of Washington, Seattle, USA.

11.
Hansen, K.H., Ahring, B.K., and Raskin, L. 1999. Quantification of syntrophic fatty acid-$\beta$-oxidizing bacteria in a mesophilic biogas by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 65, 4767-4774.

12.
Hattori, S. 2008. Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ. 23, 118-127. crossref(new window)

13.
Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21-132. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.

14.
Karakashev, D., Bastone, D.J., and Angelidaki, I. 2005. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71, 331-338. crossref(new window)

15.
Kim, J.K., Cho, J.H., Lee, J.S., Hahm, K.S., Park, D.H., and Kim, S.W. 2002. Mass production of methane from food wastes with concomitant wastewater treatment. Appl. Biochem. Biotechnol. 98-100, 753-764. crossref(new window)

16.
Kim, J.K., Han, G.H., Oh, B.R., Chun, Y.N., Eom, C.Y., and Kim, S.W. 2008. Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresour. Technol. 99, 4394-4399. crossref(new window)

17.
Kongjan, P., O-Thong, S., and Angelidaki, I. 2011. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour. Technol. 102, 4028-4035. crossref(new window)

18.
Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, England.

19.
Lee, C., Kim, J., Shin, S.G., O'Flaherty, V., and Hwang, S. 2010. Quantitative and qualitative transition of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Appl. Microbiol. Biotechnol. 87, 1963-1973. crossref(new window)

20.
Maestrojuan, G.M., Boone, D.R., Xun, L., Mah, R.A., and Zhang, L. 1990. Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the Genus Methanoculleus gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int. J. Syst. Bacteriol. 40, 117-122. crossref(new window)

21.
Menes, R.J. and Muxi, L. 2002. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 52, 157-164. crossref(new window)

22.
Miller, D.N., Bryant, J.E., Madsen, E.L., and Ghiorse, W.C. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715-4724.

23.
Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.

24.
Ollivier, B.M., Mah, R.A., Garcia, J.L., and Boone, D.R. 1986. Isolation and characterization of Methanogenium bourgense sp. nov. Int. J. Syst. Bacteriol. 36, 297-301. crossref(new window)

25.
Ovreas, L., Forney, L., Daae, F.L., and Torsvik, V. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367-3373.

26.
Qiu, Y.L., Sekiguchi, Y., Hanada, S., Imachi, H., Tseng, I.C., Cheng, S.S., Ohashi, A., Harada, H., and Kamagata, Y. 2006. Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch. Microbiol. 185, 172-182. crossref(new window)

27.
Rees, G.N., Patel, B.K., Grassia, G.S., and Sheehy, A.J. 1997. Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int. J. Syst. Bacteriol. 47, 150-154. crossref(new window)

28.
Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.

29.
Sawayama, S., Tada, C., Tsukahara, K., and Yagishita, T. 2004. Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J. Biosci. Bioeng. 97, 65-70. crossref(new window)

30.
Schnürer, A., Schink, B.G., and Svensson, B.H. 1996. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int. J. Syst. Evol. Microbiol. 46, 1145-1152.

31.
Schnurer, A., Zellner, G., and Svensson, B.H. 1999. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol. Ecol. 29, 249-261. crossref(new window)

32.
Sekiguchi, Y., Imachi, H., Susilorukmi, A., Muramatsu, M., Ohashi, A., Harada, H., Hanada, S., and Kamagata, Y. 2006. Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int. J. Syst. Evol. Microbiol. 56, 1621-1629. crossref(new window)

33.
Song, M., Shin, S.G., and Hwang, S. 2010. Methanogenic population dynamics assessed by real-timequantitativePCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresour. Technol. 101, S23-S28. crossref(new window)

34.
Steinhaus, B., Garcia, M.L., Shen, A.Q., and Angenent, L.T. 2007. A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl. Environ. Microbiol. 73, 1653-1658. crossref(new window)

35.
Thompson, J.D., Gilson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. crossref(new window)

36.
Tian, J., Wang, Y., and Dong, X. 2010. Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int. J. Syst. Evol. Microbiol. 60, 2165-2169. crossref(new window)

37.
Westerholm, M., Roos, S., and Schnürer, A. 2011. Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst. Appl. Microbiol. 34, 260-266. crossref(new window)

38.
Zellner, G., Messner, P., Winter, J., and Stackebrandt, E. 1998. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in north-Sumatra, Indonesia. Int. J. Syst. Bacteriol. 48, 1111-1117. crossref(new window)