Advanced SearchSearch Tips
Cloning and Characterization of Xylanase Gene from Paenibacillus woosongensis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Microbiology
  • Volume 48, Issue 2,  2012, pp.141-146
  • Publisher : The Microbiological Society of Korea
  • DOI : 10.7845/kjm.2012.48.2.141
 Title & Authors
Cloning and Characterization of Xylanase Gene from Paenibacillus woosongensis
Yoon, Ki-Hong;
  PDF(new window)
A gene encoding the xylanase (XynA) predicted from partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by PCR. This xynA gene consisted of 633 nucleotides, encoding a polypeptide of 211 amino acid residues. The deduced amino acid sequence exhibited 85-89% identity with those of several Paenibacillus xylanases, belonging to the glycosyl hydrolase family 11. As a results of expression of the structural gene by T7 promoter of a pET23a(+) expression vector, xylanase activity was higher in cell-free extract than culture filtrate of a recombinant Escherichia coli BL21(DE3) CodonPlus. However, the expression level of xylanase was not sufficient be detected by SDS-PAGE. The cell-free extract showed maximal xylanase activity at and pH 5.5. The predominant products resulting from xylan and xylooligosaccharide hydrolysis were xylose and xylotriose. The enzyme could hydrolyze xylooligosaccharides larger than xylbiose.
Paenibacillus woosongensis;cloning;reaction property;xylanase;
 Cited by
Bolam, D.N., Hughes, N., Virden, R., Lakey, J.H., Hazlewood, G.P., Henrissat, B., Braithwaite, K.L., and Gilbert, H.J. 1996. Mannanase A from Pseudomonas fluorescens spp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35, 16195-16204. crossref(new window)

Cuyvers, S., Dornez, E., Delcour, J.A., and Courtin, C.M. 2011. The secondary substrate binding site of the Pseudoalteromonas haloplanktis GH8 xylanase is relevant for activity on insoluble but not soluble substrates. Appl. Microbiol. Biotechnol. 92, 539-549. crossref(new window)

Fukuda, M., Watanabe, S., Yoshida, S., Itoh, H., Itoh, Y., Kamio, Y., and Kaneko, J. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192, 2210-2219. crossref(new window)

Gallardo, O., Pastor, F.I., Polaina, J., Diaz, P., Lysek, R., Vogel, P., Isorna, P., Gonzalez, B., and Sanz-Aparicio, J. 2010. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J. Biol. Chem. 285, 2721-2733. crossref(new window)

Gallardo, O., Fernandez-Fernandez, M., Valls, C., Valenzuela, S.V., Roncero, M.B., Vidal, T., Diaz, P., and Pastor, F.I. 2010. Characterization of a family GH5 xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Appl. Environ. Microbiol. 76, 6290-6294. crossref(new window)

Harada, K.M., Tanaka, K., Fukuda, Y., Hashimoto, W., and Murata, K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicelluloses. Microbiol. Res. 163, 293-298. crossref(new window)

Lee, J.-C. and Yoon, K.-H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58, 612-616. crossref(new window)

Lee, T.H., Lim, P.O., and Lee, Y.E. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17, 29-36.

Kim, Y.A. and Yoon, K.-H. 2010. Characterization of a Paenibacillus woosongensis β-xylosidase/α-arabinofuranosidase produced by recombinant Escherichia coli. J. Microbiol. Biotechnol. 29, 1711-1716.

Ko, C.-H., Lin, Z.-P., Tu, J., Tsai, C.-H., Liu, C.-C., Chen, H.-T., and Wang, T.-P. 2010. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Inter. Biodeterior. Biodegr. 64, 13-19. crossref(new window)

Kweun, M.A., Shon, J.Y., and Yoon, K.-H. 2004. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32, 212-217.

Miller, M.L., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.

Murakami, M.T., Arni, R.K., Vieira, D.S., Degreve, L., Ruller, R., and Ward, R.J. 2005. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett. 579, 6505-6510.

Stjohn, F.J., Rice, J.D., and Preston, J.F. 2006. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72, 1496-1506. crossref(new window)

Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 33-64. crossref(new window)

Thomson, J.A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104, 65-82. crossref(new window)

Valenzuela, S.V., Diaz, P., and Javier Pastor, F.I. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 58, 4814-4818. crossref(new window)

Waeonukul, R., Pason, P., Kyu, K.L., Sakka, K., Kosugi, A., Mori, Y., and Ratanakhanokchai, K. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-$\beta$-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19, 277-285.

Watanabe, S., Viet, D.N., Kaneko, J., Kamio, Y., and Yoshida, S. 2008. Cloning, expression, and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase 1. Biosci. Biotechnol. Biochem. 72, 951-958. crossref(new window)

Yoon, K.-H. 2009. Cloning of a Bacillus subtilis AMX-4 xylanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 19, 1514-1519. crossref(new window)

Yoon, K.-H. 2010. Mannanolytic enzyme activity of Paenibacillus woosongensis. Kor. J. Microbiol. 46, 397-400.