JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bacterial Phosphate Homeostasis: Role of Phosphate Transporters
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Microbiology
  • Volume 48, Issue 2,  2012, pp.57-65
  • Publisher : The Microbiological Society of Korea
  • DOI : 10.7845/kjm.2012.48.2.057
 Title & Authors
Bacterial Phosphate Homeostasis: Role of Phosphate Transporters
Park, Yoon-Mee; Bang, Iel-Soo;
  PDF(new window)
 Abstract
Phosphorous is an essential element for the synthesis of various biomolecules including phospholipids, carbohydrates and nucleic acids. Bacterial cells can uptake it as forms of phosphate and phosphate-containing nutrients from extracellular environments, and reserve extra phosphate to polyphosphate inside the cell. Among five phosphate transport systems, Pst plays central roles in phosphate transport, and its expression is coordinated by the regulation of PhoB-PhoR two component signal transduction system in response to extracellular levels of phosphate. Genomic studies on the response regulator PhoB reveal many genes independent of phosphate metabolism. Based on recent findings on phenotypes of bacteria lacking proper function of each phosphate transport system, this review discusses roles of phosphate transporters in maintaining optimum intracellular phosphate levels, and presents diverse phenotypes of phosphate transporters related with other environmental signals as well as phosphate, then finally points out functional redundancy among phosphate transport systems or their regulators, which emphasize importance of phosphate homeostasis in governing metabolism, adaptation, and virulence of bacteria.
 Keywords
PhoB;phosphate homeostasis;phosphate transporter;phosphorous;Pst system;
 Language
Korean
 Cited by
 References
1.
Aguena, M., Yagil, E., and Spira, B. 2002. Transcriptional analysis of the pst operon of Escherichia coli. Mol. Genet. Genomics 268, 518-524. crossref(new window)

2.
Auesukaree, C., Homma, T., Tochio, H., Shirakawa, M., Kaneko, Y., and Harashima, S. 2004. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J. Biol. Chem. 279, 17289-17294. crossref(new window)

3.
Ault-Riche, D., Fraley, C.D., Tzeng, C.M., and Kornberg, A. 1998. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841-1847.

4.
Baek, J.H., Kang, Y.J., and Lee, S.Y. 2007. Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in Escherichia coli. FEMS Microbiol. Lett. 277, 254-259. crossref(new window)

5.
Baek, J.H. and Lee, S.Y. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104-109. crossref(new window)

6.
Battesti, A., Majdalani, N., and Gottesman, S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189-213. crossref(new window)

7.
Bauer, K., Benz, R., Brass, J., and Boos, W. 1985. Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation. J. Bacteriol. 161, 813-816.

8.
Beard, S.J., Hashim, R., Wu, G., Binet, M.R., Hughes, M.N., and Poole, R.K. 2000. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184, 231-235. crossref(new window)

9.
Bhatt, K., Banerjee, S.K., and Chakraborti, P.K. 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur. J. Biochem. 267, 4028- 4032. crossref(new window)

10.
Birkey, S.M., Sun, G., Piggot, P.J., and Hulett, F.M. 1994. A pho regulon promoter induced under sporulation conditions. Gene 147, 95-100. crossref(new window)

11.
Borsetti, F., Toninello, A., and Zannoni, D. 2003. Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a Delta pH-dependent process. FEBS Lett. 554, 315-318. crossref(new window)

12.
Buckles, E.L., Wang, X., Lockatell, C.V., Johnson, D.E., and Donnenberg, M.S. 2006. PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152, 153-160. crossref(new window)

13.
Budin-Verneuil, A., Pichereau, V., Auffray, Y., Ehrlich, D., and Maguin, E. 2007. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics 7, 2038-2046. crossref(new window)

14.
Burall, L.S., Harro, J.M., Li, X., Lockatell, C.V., Himpsl, S.D., Hebel, J.R., Johnson, D.E., and Mobley, H.L. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922-2938. crossref(new window)

15.
Carmany, D.O., Hollingsworth, K., and McCleary, W.R. 2003. Genetic and biochemical studies of phosphatase activity of PhoR. J. Bacteriol. 185, 1112-1115. crossref(new window)

16.
Castaneda-Garcia, A., Rodriguez-Rojas, A., Guelfo, J.R., and Blazquez, J. 2009. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J. Bacteriol. 191, 6968-6974. crossref(new window)

17.
Cesselin, B., Ali, D., Gratadoux, J.J., Gaudu, P., Duwat, P., Gruss, A., and El Karoui, M. 2009. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155, 2274-2281. crossref(new window)

18.
Chakraborti, P.K., Bhatt, K., Banerjee, S.K., and Misra, P. 1999. Role of an ABC importer in mycobacterial drug resistance. Biosci. Rep. 19, 293-300. crossref(new window)

19.
Chan, F.Y. and Torriani, A. 1996. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J. Bacteriol. 178, 3974-3977. crossref(new window)

20.
Chavez, F.P., Mauriaca, C., and Jerez, C.A. 2009. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria. BMC Res. Notes 2, 50. crossref(new window)

21.
Cheng, C., Tennant, S.M., Azzopardi, K.I., Bennett-Wood, V., Hartland, E.L., Robins-Browne, R.M., and Tauschek, M. 2009. Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect. Immun. 77, 1936-1944. crossref(new window)

22.
Crepin, S., Chekabab, S.M., Le Bihan, G., Bertrand, N., Dozois, C.M., and Harel, J. 2011. The Pho regulon and the pathogenesis of Escherichia coli. Vet. Microbiol. 153, 82-88. crossref(new window)

23.
Critzer, F.J., D'Souza, D.H., Saxton, A.M., and Golden, D.A. 2010. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J. Food Prot. 73, 819-824. crossref(new window)

24.
De Groote, V.N., Fauvart, M., Kint, C.I., Verstraeten, N., Jans, A., Cornelis, P., and Michiels, J. 2011. Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J. Med. Microbiol. 60, 329-336. crossref(new window)

25.
Diaz, M., Esteban, A., Fernandez-Abalos, J.M., and Santamaria, R.I. 2005. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151, 2583-2592. crossref(new window)

26.
Esteban, A., Diaz, M., Yepes, A., and Santamaria, R.I. 2008. Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol. 8, 201. crossref(new window)

27.
Ferreira, G.M. and Spira, B. 2008. The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells. Microbiology 154, 2025-2036. crossref(new window)

28.
Fischer, R.J., Oehmcke, S., Meyer, U., Mix, M., Schwarz, K., Fiedler, T., and Bahl, H. 2006. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 188, 5469-5478. crossref(new window)

29.
Fisher, S.L., Kim, S.K., Wanner, B.L., and Walsh, C.T. 1996. Kinetic comparison of the specificity of the vancomycin resistance VanS for two response regulators, VanR and PhoB. Biochemistry 35, 4732-4740. crossref(new window)

30.
Fraley, C.D., Rashid, M.H., Lee, S.S., Gottschalk, R., Harrison, J., Wood, P.J., Brown, M.R., and Kornberg, A. 2007. A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc. Natl. Acad. Sci. USA 104, 3526-3531. crossref(new window)

31.
Gangaiah, D., Kassem, II, Liu, Z., and Rajashekara, G. 2009. Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-butnonculturable cell formation, natural transformation, and antimicrobial resistance. Appl. Environ. Microbiol. 75, 7838-7849. crossref(new window)

32.
Gebhard, S., Ekanayaka, N., and Cook, G.M. 2009. The low-affinity phosphate transporter PitA is dispensable for in vitro growth of Mycobacterium smegmatis. BMC Microbiol. 9, 254. crossref(new window)

33.
Geiger, O., Rohrs, V., Weissenmayer, B., Finan, T.M., and Thomas- Oates, J.E. 1999. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl- N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol. 32, 63-73. crossref(new window)

34.
Gristwood, T., Fineran, P.C., Everson, L., Williamson, N.R., and Salmond, G.P. 2009. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol. 9, 112. crossref(new window)

35.
Hoffer, S.M., van Uden, N., and Tommassen, J. 2001. Expression of the pho regulon interferes with induction of the uhpT gene in Escherichia coli K-12. Arch. Microbiol. 176, 370-376. crossref(new window)

36.
Hsieh, Y.J. and Wanner, B.L. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198-203. crossref(new window)

37.
Huang, Y., Lemieux, M.J., Song, J., Auer, M., and Wang, D.N. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616-620. crossref(new window)

38.
Hulett, F.M., Lee, J., Shi, L., Sun, G., Chesnut, R., Sharkova, E., Duggan, M.F., and Kapp, N. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176, 1348-1358. crossref(new window)

39.
Jackson, R.J., Binet, M.R., Lee, L.J., Ma, R., Graham, A.I., McLeod, C.W., and Poole, R.K. 2008. Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol. Lett. 289, 219-224. crossref(new window)

40.
Jacobsen, S.M., Lane, M.C., Harro, J.M., Shirtliff, M.E., and Mobley, H.L. 2008. The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol. Med. Microbiol. 52, 180-193. crossref(new window)

41.
Jahid, I.K., Silva, A.J., and Benitez, J.A. 2006. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl. Environ. Microbiol. 72, 7043-7049. crossref(new window)

42.
Kato, J., Yamamoto, T., Yamada, K., and Ohtake, H. 1993. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene 137, 237-242. crossref(new window)

43.
Kim, H.J., Yang, K.Y., Cho, B.H., Kim, K.Y., Lee, M.C., Kim, Y.H., Anderson, A.J., and Kim, Y.C. 2007. Transcript accumulation from the rpoS gene encoding a stationary-phase sigma factor in Pseudomonas chlororaphis strain O6 is regulated by the polyphosphate kinase gene. Curr. Microbiol. 54, 219-223. crossref(new window)

44.
Kim, S.K., Makino, K., Amemura, M., Nakata, A., and Shinagawa, H. 1995. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB. Mol. Gen. Genet. 248, 1-8. crossref(new window)

45.
Kuroda, A., Murphy, H., Cashel, M., and Kornberg, A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 272, 21240-21243. crossref(new window)

46.
Lamarche, M.G. and Harel, J. 2010. Membrane homeostasis requires intact pst in extraintestinal pathogenic Escherichia coli. Curr. Microbiol. 60, 356-359. crossref(new window)

47.
Lamarche, M.G., Kim, S.H., Crepin, S., Mourez, M., Bertrand, N., Bishop, R.E., Dubreuil, J.D., and Harel, J. 2008a. Modulation of hexa-acyl pyrophosphate lipid A population under Escherichia coli phosphate (Pho) regulon activation. J. Bacteriol. 190, 5256-5264. crossref(new window)

48.
Lamarche, M.G., Wanner, B.L., Crepin, S., and Harel, J. 2008b. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461-473. crossref(new window)

49.
Lau, W.T., Howson, R.W., Malkus, P., Schekman, R., and O'Shea, E.K. 2000. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc. Natl. Acad. Sci. USA 97, 1107-1112. crossref(new window)

50.
Lemieux, M.J., Huang, Y., and Wang, D.N. 2004. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res. Microbiol. 155, 623-629. crossref(new window)

51.
Li, Y. and Zhang, Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092-2099. crossref(new window)

52.
Luz, D.E., Nepomuceno, R.S., Spira, B., and Ferreira, R.C. 2012. The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Mol. Oral Microbiol. 27, 172-181. crossref(new window)

53.
Merkel, T.J., Nelson, D.M., Brauer, C.L., and Kadner, R.J. 1992. Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J. Bacteriol. 174, 2763-2770. crossref(new window)

54.
Metcalf, W.W. and Wanner, B.L. 1991. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J. Bacteriol. 173, 587- 600. crossref(new window)

55.
Moberly, J.G., Staven, A., Sani, R.K., and Peyton, B.M. 2010. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ. Sci. Technol. 44, 7302-7308. crossref(new window)

56.
Monds, R.D., Silby, M.W., and Mahanty, H.K. 2001. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol. Microbiol. 42, 415-426. crossref(new window)

57.
Moraleda-Munoz, A., Carrero-Lerida, J., Extremera, A.L., Arias, J.M., and Munoz-Dorado, J. 2001. Glycerol 3-phosphate inhibits swarming and aggregation of Myxococcus xanthus. J. Bacteriol. 183, 6135-6139. crossref(new window)

58.
Morohoshi, T., Maruo, T., Shirai, Y., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., and Kuroda, A. 2002. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68, 4107-4110. crossref(new window)

59.
Motomura, K., Hirota, R., Ohnaka, N., Okada, M., Ikeda, T., Morohoshi, T., Ohtake, H., and Kuroda, A. 2011. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25-32. crossref(new window)

60.
Muda, M., Rao, N.N., and Torriani, A. 1992. Role of PhoU in phosphate transport and alkaline phosphatase regulation. J. Bacteriol. 174, 8057 -8064. crossref(new window)

61.
Mudrak, B. and Tamayo, R. 2012. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 80, 1794-1802. crossref(new window)

62.
Nezbedova, S., Bezouskova, S., Kofronova, O., Benada, O., Rehulka, P., Rehulkova, H., Goldova, J., Janecek, J., and Weiser, J. 2011. The use of glass beads cultivation system to study the global effect of the ppk gene inactivation in Streptomyces lividans. Folia Microbiol. (Praha) 56, 519-525. crossref(new window)

63.
O'May, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L., and Shirtliff, M.E. 2009. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155, 1523-1535. crossref(new window)

64.
Oganesyan, V., Oganesyan, N., Adams, P.D., Jancarik, J., Yokota, H.A., Kim, R., and Kim, S.H. 2005. Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus. J. Bacteriol. 187, 4238-4244. crossref(new window)

65.
Ogawa, N., Tzeng, C.M., Fraley, C.D., and Kornberg, A. 2000. Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J. Bacteriol. 182, 6687-6693. crossref(new window)

66.
Ostrowski, M., Mazard, S., Tetu, S.G., Phillippy, K., Johnson, A., Palenik, B., Paulsen, I.T., and Scanlan, D.J. 2010. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J. 4, 908-921. crossref(new window)

67.
Panhorst, M., Sorger-Herrmann, U., and Wendisch, V.F. 2011. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J. Biotechnol. 154, 149-155. crossref(new window)

68.
Park, J.Y. 2010. Phosphate deficiency stress response mediated by Pho regulon in Bacillus subtilis. Kor. J. Microbiol. 46, 113-121.

69.
Pongprayoon, P., Beckstein, O., Wee, C.L., and Sansom, M.S. 2009. Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate. Proc. Natl. Acad. Sci. USA 106, 21614-21618. crossref(new window)

70.
Pratt, J.T., Ismail, A.M., and Camilli, A. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77, 1595-1605. crossref(new window)

71.
Pratt, J.T., McDonough, E., and Camilli, A. 2009. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 191, 6632-6642. crossref(new window)

72.
Price-Carter, M., Fazzio, T.G., Vallbona, E.I., and Roth, J.R. 2005. Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J. Bacteriol. 187, 3088-3099. crossref(new window)

73.
Rao, N.N., Gomez-Garcia, M.R., and Kornberg, A. 2009. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605-647. crossref(new window)

74.
Rao, N.N. and Kornberg, A. 1999. Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog. Mol. Subcell. Biol. 23, 183-195. crossref(new window)

75.
Rao, N.N., Liu, S., and Kornberg, A. 1998. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J. Bacteriol. 180, 2186-2193.

76.
Reid, A.N., Pandey, R., Palyada, K., Whitworth, L., Doukhanine, E., and Stintzi, A. 2008. Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl. Environ. Microbiol. 74, 1598-1612. crossref(new window)

77.
Richards, G.R. and Vanderpool, C.K. 2012. Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response. J. Bacteriol. 194, 2520-2530. crossref(new window)

78.
Rifat, D., Bishai, W.R., and Karakousis, P.C. 2009. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 200, 1126-1135. crossref(new window)

79.
Rodriguez-Garcia, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A., and Martin, J.F. 2007. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7, 2410-2429. crossref(new window)

80.
Rogge, M.L. and Thune, R.L. 2011. Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl. Environ. Microbiol. 77, 4293-4302. crossref(new window)

81.
Ruiz, N. and Silhavy, T.J. 2003. Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J. Bacteriol. 185, 5984-5992. crossref(new window)

82.
Runyen-Janecky, L.J., Boyle, A.M., Kizzee, A., Liefer, L., and Payne, S.M. 2005. Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect. Immun. 73, 1404-1410. crossref(new window)

83.
Scanlan, D.J., Mann, N.H., and Carr, N.G. 1993. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol. Microbiol. 10, 181-191. crossref(new window)

84.
Schurdell, M.S., Woodbury, G.M., and McCleary, W.R. 2007. Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J. Bacteriol. 189, 1150-1153. crossref(new window)

85.
Shi, X., Rao, N.N., and Kornberg, A. 2004. Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc. Natl. Acad. Sci. USA 101, 17061-17065. crossref(new window)

86.
Slater, H., Crow, M., Everson, L., and Salmond, G.P. 2003. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. 47, 303-320.

87.
Soualhine, H., Brochu, V., Menard, F., Papadopoulou, B., Weiss, K., Bergeron, M.G., Legare, D., Drummelsmith, J., and Ouellette, M. 2005. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol. Microbiol. 58, 1430-1440. crossref(new window)

88.
Steed, P.M. and Wanner, B.L. 1993. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCABphoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J. Bacteriol. 175, 6797-6809. crossref(new window)

89.
Sultan, S.Z., Silva, A.J., and Benitez, J.A. 2010. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol. Lett. 302, 22-31. crossref(new window)

90.
Sureka, K., Sanyal, S., Basu, J., and Kundu, M. 2009. Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol. Microbiol. 74, 1187-1197. crossref(new window)

91.
Surin, B.P., Jans, D.A., Fimmel, A.L., Shaw, D.C., Cox, G.B., and Rosenberg, H. 1984. Structural gene for the phosphate-repressible phosphate-binding protein of Escherichia coli has its own promoter: complete nucleotide sequence of the phoS gene. J. Bacteriol. 157, 772-778.

92.
Surin, B.P., Rosenberg, H., and Cox, G.B. 1985. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J. Bacteriol. 161, 189-198.

93.
Tunpiboonsak, S., Mongkolrob, R., Kitudomsub, K., Thanwatanaying, P., Kiettipirodom, W., Tungboontina, Y., and Tungpradabkul, S. 2010. Role of a Burkholderia pseudomallei polyphosphate kinase in an oxidative stress response, motilities, and biofilm formation. J. Microbiol. 48, 63-70. crossref(new window)

94.
van Veen, H.W. 1997. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72, 299-315. crossref(new window)

95.
van Veen, H.W., Abee, T., Kortstee, G.J., Konings, W.N., and Zehnder, A.J. 1994. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33, 1766-1770. crossref(new window)

96.
VanBogelen, R.A., Olson, E.R., Wanner, B.L., and Neidhardt, F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178, 4344-4366. crossref(new window)

97.
Wanner, B.L. 1996. Phosphorus assimilation and control of the phosphate regulon, pp. 1357-1381. In Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Jr, Magasanik, (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology Press, Washington, DC, USA.

98.
Webb, D.C., Rosenberg, H., and Cox, G.B. 1992. Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J. Biol. Chem. 267, 24661-24668.

99.
Wu, H.J., Seib, K.L., Srikhanta, Y.N., Edwards, J., Kidd, S.P., Maguire, T.L., Hamilton, A., Pan, K.T., Hsiao, H.H., Yao, C.W., and et al. 2010. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. J. Proteomics 73, 899-916. crossref(new window)