Advanced SearchSearch Tips
Analysis of a Region Required for the Functions of Fission Yeast Nucleoporin Nup184 and Its SUMO Modification
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Microbiology
  • Volume 48, Issue 2,  2012, pp.66-72
  • Publisher : The Microbiological Society of Korea
  • DOI : 10.7845/kjm.2012.48.2.066
 Title & Authors
Analysis of a Region Required for the Functions of Fission Yeast Nucleoporin Nup184 and Its SUMO Modification
Chai, Ai-Ree; Jang, Soo-Yeon; Yoon, Jin-Ho;
  PDF(new window)
The Nup188 protein is one of the largest evolutionally conserved nucleoprins (Nups) that compose the inner ring of nuclear pore complex (NPC). The Nup184 protein, fission yeast Schizosaccharomyces pombe ortholog of Nup188p, is required for normal growth and mRNA export in nutrient-rich medium (YES). Here, we identified a carboxyl region (482 to 1628) of Nup184 protein that was enough to complement the defects of both growth and mRNA export when the knock-out mutant was grown in YES medium. This region is also required for localization of GFP-Nup184 fusion to the nuclear periphery. In addition, we found that ORF of Nup184 (predicted 1564 amino-acid protein) registered in S. pombe GeneDB (hosted by Sanger Institute, UK) is 64 amino-acid residues shorter than that predicted by our sequence data. This carboxy-terminal region is necessary for the functions of Nup184p. We further demonstrated that Nup184 protein was conjugated with SUMO in vivo.
S. pombe;mRNA export;nucleoporin;Nup184;SUMO modification;
 Cited by
Aitchison, J.D. and Rout, M.P. 2012. The yeast nuclear pore complex and transport through it. Genetics 190, 855-883. crossref(new window)

Aitchison, J.D., Rout, M.P., Marelli, M., Blobel, G., and Wozniak, R.W. 1995. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol. 131, 1133-1148. crossref(new window)

Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., and et al. 2007. Determining the architectures of macromolecular assemblies. Nature 450, 683-694. crossref(new window)

Alfa, C., Fantes, P., Hyams, J., Mcleod, M., and Warbrick, E. 1993. Experiments with Fission Yeast. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P., and Hurt, E. 2011. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277-289.

Caspari, T., Dahlen, M., Kanter-Smoler, G., Lindsay, H.D., Hofmann, K., Papadimitriou, K., Sunnerhagen, P., and Carr, A.M. 2000. Characterization of Schizosaccharomyces pombe Hus1: a PCNArelated protein that associates with Rad1 and Rad9. Mol. Cell. Biol. 20, 1254-1262. crossref(new window)

Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., and Matunis, M.J. 2002. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915-927. crossref(new window)

Devos, D., Dokudovskaya, S., Alber, F., Williams, R., Chait, B.T., Sali, A., and Rout, M.P. 2004. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380. crossref(new window)

Devos, D., Dokudovskaya, S., Williams, R., Alber, F., Eswar, N., Chait, B.T., Rout, M.P., and Sali, A. 2006. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl. Acad. Sci. USA 103, 2172-2177. crossref(new window)

Dohmen, R.J. 2004. SUMO protein modification. Biochim. Biophys. Acta 1695, 113-131. crossref(new window)

Fabre, E. and Hurt, E. 1997. Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu. Rev. Genet. 31, 277-313. crossref(new window)

Flemming, D., Devos, D.P., Schwarz, J., Amlacher, S., Lutzmann, M., and Hurt, E. 2012. Analysis of the yeast nucleoporin Nup188 reveals a conserved S-like structure with similarity to karyopherins. J. Struct. Biol. 177, 99-105. crossref(new window)

Geiss-Friedlander, R. and Melchior, F. 2007. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8, 947-956. crossref(new window)

Hoelz, A., Debler, E.W., and Blobel, G. 2011. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80, 613-643. crossref(new window)

Leupold, U. 1950. Die Vererbung von Homothallie und Heterothallie bei Schizosaccharomyces pombe. C. R. Lab. Carlsberg Ser. Physiol. 24, 381-480.

Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107. crossref(new window)

Matunis, M.J., Coutavas, E., and Blobel, G. 1996. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPaseactivating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457-1470. crossref(new window)

Moreno, S., Klar, A., and Nurse, P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795-823. crossref(new window)

Mukhopadhyay, D. and Dasso, M. 2007. Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286-295. crossref(new window)

Nehrbass, U., Rout, M.P., Maguire, S., Blobel, G., and Wozniak, R.W. 1996. The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J. Cell Biol. 133, 1153-1162. crossref(new window)

Palancade, B. and Doye, V. 2008. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol. 18, 174-183. crossref(new window)

Reichelt, R., Holzenburg, A., Buhle, E.L.Jr., Jarnik, M., Engel, A., and Aebi. U. 1990. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell. Biol. 110, 883-894. crossref(new window)

Rout, M.P. and Aitchison, J.D. 2001. The nuclear pore complex as a transport machine. J. Biol. Chem. 276, 16593-16596. crossref(new window)

Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B.T. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell. Biol. 148, 635-651. crossref(new window)

Stoffler, D., Fahrenkrog, B., and Aebi, U. 1999. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391-401. crossref(new window)

Suntharalingam, M. and Wente, S.R. 2003. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775-789. crossref(new window)

Whalen, W.A., Yoon, J.H., Shen, R., and Dhar, R. 1999. Regulation of mRNA export by nutritional status in fission yeast. Genetics 152, 827-838.

Yoon, J.H., Love, D., Guhathakurta, A., Hanover, J.A., and Dhar, R. 2000. Mex67p of Schizosaccharomyces pombe interacts with Rae1p in mediating mRNA export. Mol. Cell. Biol. 20, 8767-8782. crossref(new window)

Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Domínguez, Y., and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41, 973-981. crossref(new window)

Zabel, U., Doye, V., Tekotte, H., Wepf, R., Grandi, P., and Hurt, E.C. 1996. Nic96p is required for nuclear pore formation and functionally interacts with a novel nucleoporin, Nup188p. J. Cell Biol. 133, 1141-1152. crossref(new window)

Zhao, J. 2007. Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci. 64, 3017-3333. crossref(new window)