Advanced SearchSearch Tips
Resistance Determinants and Antimicrobial Susceptibilities of Mupirocin-Resistant Staphylococci Isolated from a Korean Hospital
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Microbiology
  • Volume 48, Issue 2,  2012, pp.93-101
  • Publisher : The Microbiological Society of Korea
  • DOI : 10.7845/kjm.2012.48.2.093
 Title & Authors
Resistance Determinants and Antimicrobial Susceptibilities of Mupirocin-Resistant Staphylococci Isolated from a Korean Hospital
Min, Yu-Hong; Lee, Jong-Seo; Kwon, Ae-Ran; Shim, Mi-Ja; Choi, Eung-Chil;
  PDF(new window)
We analyzed mupirocin resistance rates among staphylococcal isolates collected from a Korean hospital in 2003 (100 isolates), 2005 (195 isolates), 2006 (151 isolates), and 2009 (112 isolates). In Staphylococcus aureus, rates of high-level mupirocin resistance (MIC, minimal inhibitory concentration ) decreased and did not appear since 2005. In contrast, low-level mupirocin resistance (MIC ) was not detected in 2003 and 2005 but its rates later increased to 6.9% in 2009. Total resistance rates of coagulase-negative staphylococci (CNS) were significantly higher than those of S. aureus. The rates of high-level resistance of CNS increased from 16.0% in 2003 to 31.5% in 2009. The rate of low-level resistance of CNS was 8.0% in 2003 and around 11% later. In all high-level resistant isolates, the ileS-2 gene was detected. All low-level resistant isolates contained the known V588F mutation in ileS gene. Previously unknown mutations such as V458G in S. aureus and D172A, Y490H and I750V in CNS were identified additionally. One S. aureus isolate with high-level resistance was resistant to oxacillin and several topical antibiotics commonly used for the treatment of skin infection. Ten S. aureus isolates with low-level resistance were also resistant to all of these antibiotics except fusidic acid. CNS isolates with high-level (61 isolates) and low-level resistance (27 isolates) exhibited significantly higher resistance rates to these antibiotics than mupirocin-susceptible CNS isolates (167 isolates). In conclusion, prevention of the emergence of mupirocin resistance is necessary for the effective treatment of skin infection by staphylococci.
Staphylococcus aureus;coagulase-negative staphylococci;mupirocin;resistance;
 Cited by
부산지역 치과환경에서 분리된 coagulase-negative staphylococci의 특성,정혜인;정소영;박인달;배일권;

생명과학회지, 2016. vol.26. 2, pp.220-225 crossref(new window)
Characteristics of Coagulase-negative Staphylococci Isolates from Dental Clinic Environments in Busan, Korea, Journal of Life Science, 2016, 26, 2, 220  crossref(new windwow)
Andrews, J.M. 2009. BSAC standardized disc susceptibility testing method (version 8). J. Antimicrob. Chemother. 64, 454-489. crossref(new window)

Antonio, M., McFerran, N., and Pallen, M.J. 2002. Mutations affecting the Rossman fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 438-442. crossref(new window)

Bastos, M.C.F., Mondino, P.J.J., Azevedo, M.L.B., Santos, K.R.N., and Giambiagi-deMarval, M. 1999. Molecular characterization and transfer among Staphylococcus strains of a plasmid conferring high-level resistance to mupirocin. Eur. J. Clin. Microbiol. Infect. Dis. 18, 393-398. crossref(new window)

Caierao, J., Berquo, L., Dias, C., and d'Azevedo, P.A. 2006. Decrease in the incidence of mupirocin resistance among methicillin-resistant Staphylococcus aureus in carriers from an intensive care unit. Am. J. Infect. Control 34, 6-9. crossref(new window)

Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M7-A7. CLSI, Wayne, Pa, USA.

Clinical and Laboratory Standards Institute. 2009. Performance standards for antimicrobial susceptibility testing. M100-S19. CLSI. Wayne, Pa, USA.

Creagh, S. and Lucey, B. 2007. Interpretive criteria for mupirocin susceptibility testing of Staphylococcus spp. using CLSI guidelines. Br. J. Biomed. Sci. 64, 1-5. crossref(new window)

Dyke, K.G., Aubert, S., and el Solh, N. 1992. Multiple copies of IS256 in staphylococci. Plasmid 28, 235-246. crossref(new window)

Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126-2132. crossref(new window)

Fujimura, S., Tokue, Y., and Watanabe, A. 2003. Isoleucyl-tRNA synthetase mutations in Staphylococcus aureus clinical isolates and in vitro selection of low-level mupirocin-resistant strains. Antimicrob. Agents Chemother. 47, 3373-3374. crossref(new window)

Gilbart, J., Perry, C.R., and Slocombe, B. 1993. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob. Agents Chemother. 37, 32-38. crossref(new window)

Hodgson, J.E., Curnock, S.P., Dyke, K.G., Morris, R., Sylvester, D.R., and Gross, M.S. 1994. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob. Agents Chemother. 38, 1205-1208. crossref(new window)

Hurdle, J.G., O'Neill, A.J., Mody, L., Chopra, I., and Bradley, S.F. 2005. In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. J. Antimicrob. Chemother. 56, 1166-1168. crossref(new window)

Kim, S.M., Lee, D.C., Park, S.D., Kim, B.S., Kim, J.K., Choi, M.R., Park, S.Y., Hwang, S.M., Shin, N.Y., Shim, E.S., and et al. 2009. Genotype, coagulase type and antimicrobial susceptibility of methicillinresistant Staphylococcus aureus isolated from dermatology patients and healthy individuals in Korea. J. Bacteriol. Virol. 39, 307-316. crossref(new window)

Kim, S.M., Park, S.Y., and Park, S.D. 2011. Isolation and antimicrobial susceptibility of mupirocin-resistant and methicillin-resistant Staphylococcus aureus from clinical samples. J. Bacteriol. Virol. 41, 279-286. crossref(new window)

Kresken, M., Hafner, D., Schmitz, F.J., and Wichelhaus, T.A. 2004. Prevalence of mupirocin resistance in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis: results of the Antimicrobial Resistance Surveillance Study of the Paul-Ehrlich-Society for Chemotherapy, 2001. Int. J. Antimicrob. Agents 23, 577-581. crossref(new window)

Lee, A.S., Macedo-Vinas, M., Francois, P., Renzi, G., Vernaz, N., Schrenzel, J., Pittet, D., and Harbarth, S. 2011a. Trends in mupirocin resistance in meticillin-resistant Staphylococcus aureus and mupirocin consumption at a tertiary care hospital. J. Hosp. Infect. 77, 360-362. crossref(new window)

Lee, A.J., Suh, H.S., Jeon, C.H., and Kim, S.G. 2011b. Prevalence and clinical characteristics of mupirocin-resistant Staphylococcus aureus. Korean J. Clin. Microbiol. 14, 18-23. crossref(new window)

Lee, H.J., Suh, J.T., Kim, Y.S., Lenz, W., Bierbaum, G., and Schaal, K.P. 2001. Typing and antimicrobial susceptibilities of methicillin resistant Staphylococcus aureus (MRSA) strains isolated in a hospital in Korea. J. Kor. Med. Sci. 16, 381-385. crossref(new window)

Leyden, J.J. 1990. Mupirocin: a new topical antibiotic. J. Am. Acad. Dermatol. 22, 879-883. crossref(new window)

Lim, K.T., Hanifah, Y.A., Yusof, M.Y.M., and Thong, K.L. 2010. Prevalence of mupirocin resistance in methicillin-resistant Staphylococcus aureus strains isolated from a Malaysian hospital. Jpn. J. Infect. Dis. 63, 286-289.

Long, B.H. 2008. Fusidic acid in skin and soft-tissue infections. Acta Derm. Venereol. 88, Supplement 216, 14-20. crossref(new window)

Morton, T.M., Johnston, J.L., Patterson, J., and Archer, G.L. 1995. Characterization of a conjugative staphylococcal mupirocin resistance plasmid. Antimicrob. Agents Chemother. 39, 1272-1280. crossref(new window)

Oommen, S.K., Appalaraju, B., and Jinsha, K. 2010. Mupirocin resistance in clinical isolates of staphylococci in a tertiary care centre in south India. Indian. J. Med. Microbiol. 28, 372-375.

O'Shea, S., Cotter, L., Creagh, S., Lydon, S., and Lucey, B. 2009. Mupirocin resistance among staphylococci: trends in the southern region of Ireland. J. Antimicrob. Chemother. 64, 649-669. crossref(new window)

Park, S.Y., Kim, S.M., and Park, S.D. 2012. The prevalence, genotype and antimicrobial susceptibility of high- and low-level mupirocin resistant methicillin-resistant Staphylococcus aureus. Ann. Dermatol. 24, 32-38. crossref(new window)

Petinaki, E., Spiliopoulou, I., Kontos, F., Maniati, M., Bersos, Z., Stakias, N., Malamou-Lada, H., Koutsia-Carouzou, C., and Maniatis, A.N. 2004. Clonal dissemination of mupirocin-resistant staphylococci in Greek hospitals. J. Antimicrob. Chemother. 53, 105-108.

Schmitz, F.J., Lindenlauf, E., Hofmann, B., Fluit, A.C., Verhoef, J., Heinz, H.P., and Jones, M.E. 1998. The prevalence of low- and high-level mupirocin resistance in staphylococci from 19 European hospitals. J. Antimicrob. Chemother. 42, 489-495. crossref(new window)

Silvian, L.F., Wang, J., and Steitz, T.A. 1999. Insights into editing from an Ile-tRNA synthetase structure with $tRNA^{ile}$ and mupirocin. Science 285, 1074-1077. crossref(new window)

Sutherland, R., Boon, R.J., Griffin, K.E., Masters, P.J., Slocombe, B., and White, A.R. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27, 495-498. crossref(new window)

Thomas, D.G., Wilson, J.M., Day, M.J., and Russell, A.D. 1999. Mupirocin resistance in staphylococci: development and transfer of isoleucyl tRNA synthetase-mediated resistance in vitro. J. Appl. Microbiol. 86, 715-722. crossref(new window)

Udo, E.E., Jacob, L.E., and Mathew, B. 2001. Genetic analysis of methicillin-resistant Staphylococcus aureus expressing high- and low-level mupirocin reistance. J. Med. Microbiol. 50, 909-915. crossref(new window)

Vaara, M. 1992. The outer membrane as the penetration barrier against mupirocin in Gram-negative enteric bacteria. J. Antimicrob. Chemother. 29, 221-222. crossref(new window)

Vasquez, J.E., Walker, E.S., Franzus, B.W., Overbay, B.K., Reagan, D.R., and Sarubbi, F.A. 2000. The epidemiology of mupirocin resistance among methicillin-resistant Staphylococcus aureus at a Veterans' Affairs hospital. Infect. Control Hosp. Epidemiol. 21, 459-464. crossref(new window)

Vivoni, A.M., Santos, K.R.N., de-Oliveira, M.P., Giambiagi-deMarval, M., Ferreira, A.L.P., Riley, L.W., and Moreira, B.M. 2005. Mupirocin for controlling methicillin resistant Staphylococcus aureus: lessons from a decade of use at a university hospital. Infect. Control Hosp. Epidemiol. 26, 662-667. crossref(new window)

Yang, J.A., Park, D.W., Sohn, J.W., Yang, I.S., Kim, K.H., and Kim, M.J. 2006. Molecular analysis of isoleucyl-tRNA synthetase mutations in clinical isolates of methicillin-resistant Staphylococcus aureus with low-level mupirocin resistance. J. Korean Med. Sci. 21, 827-832. crossref(new window)

Yanagisawa, T., Lee, J.T., Wu, H.C., and Kawakami, M. 1994. Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli. A proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J. Biol. Chem. 269, 24304-24309.

Yoo, J.I., Shin, E.S., Cha, J.O., Lee, J.K., Jung, Y.H., Lee, K.M., Kim, B.S., and Lee, Y.S. 2006. Clonal dissemination and mupA gene polymorphism of mupirocin-resistant Staphylococcus aureus isolates from long-term-care facilities in South Korea. Antimicrob. Agents Chemother. 50, 365-367. crossref(new window)

Yoo, J.I., Shin, E.S., Chung, G.T., Lee, K.M., Yoo, J.S., and Lee, Y.S. 2010. Restriction fragment length polymorphism (RFLP) patterns and sequence analysis of high-level mupirocin-resistant methicillin-resistant staphylococci. Int. J. Antimicrob. Agents 35, 50-55. crossref(new window)

Yun, H.J., Lee, S.W., Yoon, G.M., Kim, S.Y., Choi, S., Lee, Y.S., Choi, E.C., and Kim, S. 2003. Prevalence and mechanisms of low- and high-level mupirocin resistance in staphylococci isolated from a Korean hospital. J. Antimicrob. Chemother. 51, 619-623. crossref(new window)