Advanced SearchSearch Tips
Defensive roles of Sdu1, a PPPDE superfamily member with ubiquitin C-terminal hydrolase activity, against thermal stress in Schizosaccharomyces pombe
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Defensive roles of Sdu1, a PPPDE superfamily member with ubiquitin C-terminal hydrolase activity, against thermal stress in Schizosaccharomyces pombe
Han, Hee; Heo, Tae Young; Ryu, In Wang; Kim, Kyunghoon; Lim, Chang-Jin;
  PDF(new window)
The gene encodes Sdu1, a PPPDE superfamily member of deubiquitinating enzymes (DUBs) in Schizosaccharomyces pombe. Sdu1 was previously shown to contain an actual ubiquitin C-terminal hydrolase (UCH) activity using the recombinant plasmid pYSTP which harbors the gene. This work was designed to assess a thermotolerant role of Sdu1 against high incubation temperatures. In the temperature-shift experiments, the S. pombe cells harboring pYSTP grew much better after the shifts to and , when compared with the vector control cells. After being shifted to and for 6 h, the S. pombe cells harboring pYSTP contained lower reactive oxygen species (ROS) levels, compared with the vector control cells. The nitric oxide (NO) levels of the S. pombe cells harboring pYSTP were slightly lower than those of the vector control cells in the absence or presence of the temperature shifting. The total glutathione (GSH) levels of the S. pombe cells harboring pYSTP were significantly higher than those of the vector control cells. Total superoxide dismutase (SOD) and GSH peroxidase activities were also higher in the S. pombe cells harboring pYSTP after the temperature shifts than in the vector control cells. In brief, the S. pombe Sdu1 plays a thermotolerant role against high incubation temperature through the down-regulation of ROS and NO and the up-regulation of total GSH content, total SOD and GSH peroxidase activities.
Schizosaccharomyces pombe;glutathione;reactive oxygen species;Sdu1;thermal stress;
 Cited by
Amerik, A.Y., Li, S.J., and Hochstrasser, M. 2000. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol. Chem. 381, 981-992.

Benassi, B., Marani, M., Loda, M., and Blandino, G. 2013. USP2a alters chemotherapeutic response by modulating redox. Cell Death Dis. 4, e812. crossref(new window)

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. crossref(new window)

Chu, K.Y., Li, H., Wada, K., and Johnson, J.D. 2012. Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia 55, 128-140. crossref(new window)

Cotto-Rios, X.M., Bekes, M., Chapman, J., Ueberheide, B., and Huang, T.T. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2, 1475-1484. crossref(new window)

Fang, W., Price, M.S., Toffaletti, D.L., Tenor, J., Betancourt-Quiroz, M., Price, J.L., Pan, W.H., Liao, W.Q., and Perfect, J.R. 2012. Pleiotropic effects of deubiquitinating enzyme Ubp5 on growth and pathogenesis of Cryptococcus neoformans. PLoS One 7, e38326. crossref(new window)

Iyer, L.M., Koonin, E.V., and Aravind, L. 2004. Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3, 1440-1450. crossref(new window)

Kaitna, S., Schnabel, H., Schnabel, R., Hyman, A.A., and Glotzer, M. 2002. A ubiquitin C-terminal hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the early C. elegans embryo. J. Cell Sci. 115(Pt 11), 2293-2302.

Kanadia, R.N., Kuo, W.N., Mcnabb, M., and Botchway, A. 1998. Constitutive nitric oxide synthase in Saccharomyces cerevisiae. Biochem. Mol. Biol. Int. 45, 1081-1087.

Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. crossref(new window)

Kig, C. and Temizkan, G. 2009. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238, 59-66. crossref(new window)

Kim, Y., Jo, H., and Lim, C.J. 2013. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe. Can. J. Microbiol. 59, 789-796. crossref(new window)

Kim, J.Y., Lee, J.M., and Cho, J.Y. 2011. Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation. FEBS Lett. 585, 1121-1126. crossref(new window)

Kim, M.S., Ramakrishna, S., Lim, K.H., Kim, J.H., and Baek, K.H. 2011. Protein stability of mitochondrial superoxide dismutase SOD2 is regulated by USP36. J. Cell. Biochem. 112, 498-508. crossref(new window)

Kimura, Y., Yashiroda, H., Kudo, T., Koitabashi, S., Murata, S., Kakizuka, A., and Tanaka, K. 2009. An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549-559. crossref(new window)

Komander, D., Clague, M.J., and Urbe, S. 2009. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell. Biol. 10, 550-563. crossref(new window)

Larsen, C.N., Krantz, B.A., and Wilkinson, K.D. 1998. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37, 3358-3368. crossref(new window)

Lee, Y.Y., Kim, H.G., Jung, H.I., Shin, Y.H., Hong, S.M., Park, E.H., Sa, J.H., and Lim, C.J. 2002. Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol. Cells 14, 305-311.

Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., Gygi, S.P., et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179-184. crossref(new window)

Meyer-Schwesinger, C., Meyer, T.N., Sievert, H., Hoxha, E., Sachs, M., Klupp, E.M., Munster, S., Balabanov, S., Carrier, L., Helmchen, U., et al. 2011. Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am. J. Pathol. 178, 2044-2057. crossref(new window)

Myers, A.M., Tzagoloff, A., Kinney, D.M., and Lusty, C.J. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310. crossref(new window)

Nagai, H., Noguchi, T., Homma, K., Katagiri, K., Takeda, K., Matsuzawa, A., and Ichijo, H. 2009. Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Mol. Cell 36, 805-818. crossref(new window)

Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.

Orlandi, I., Bettiga, M., Alberghina, L., Nystrom, T., and Vai, M. 2010. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim. Biophys. Acta. 1803, 630-638. crossref(new window)

Orlandi, I., Bettiga, M., Alberghina, L., and Vai, M. 2004. Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response. J. Biol. Chem. 279, 6414-6425. crossref(new window)

Ramakrishna, S., Suresh, B., and Baek, K.H. 2011. The role of deubiquitinating enzymes in apoptosis. Cell Mol. Life Sci. 68, 15-26. crossref(new window)

Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397. crossref(new window)

Ristic, G., Tsou, W.L., and Todi, S.V. 2014. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front. Mol. Neurosci. 7, 72.

Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. crossref(new window)

Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. crossref(new window)

Song, H.M., Lee, J.E., and Kim, J.H. 2014. Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochem. Biophys. Res. Commun. 452, 722-727. crossref(new window)

Stone, M., Hartmann-Petersen, R., Seeger, M., Bech-Otschir, D., Wallace, M., and Gordon, C. 2004. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol. 344, 697-706. crossref(new window)

Tse, W.K., Eisenhaber, B., Ho, S.H., Ng, Q., Eisenhaber, F., and Jiang, Y.J. 2009. Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics 10, 637. crossref(new window)

Wang, C.Y., Wen, W.L., Nilsson, D., Sunnerhagen, P., Chang, T.H., and Wang, S.W. 2012a. Analysis of stress granule assembly in Schizosaccharomyces pombe. RNA 18, 694-703. crossref(new window)

Wang, H., Ying, Z., and Wang, G. 2012b. Ataxin-3 regulates aggresome formation of copper-zinc superoxide dismutase (SOD1) by editing K63-linked polyubiquitin chains. J. Biol. Chem. 287, 28576-28585. crossref(new window)

Wicks, S.J., Haros, K., Maillard, M., Song, L., Cohen, R.E., Dijke, P.T., and Chantry, A. 2005. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene 24, 8080-8084. crossref(new window)

Wink, D.A., Miranda, K.M., and Espey, M.G. 2001. Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp. Biol. Med. 226, 621-623. crossref(new window)

Wolf, D.A. and Petroski, M.D. 2009. Rfu1: stimulus for the ubiquitin economy. Cell 137, 397-398. crossref(new window)