Advanced SearchSearch Tips
Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system
Park, Se-Keun; Kim, Yeong-Kwan; Oh, Young-Sook; Choi, Sung-Chan;
  PDF(new window)
The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of for total bacteria and for heterotrophic bacteria, reaching and after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by and values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.
Methylobacterium;Sphingomonas;biofilm;chlorine resistance;drinking water;growth kinetics;
 Cited by
Batte, M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., and Block, J.C. 2003a. Biofilms in drinking water distribution systems. Rev. Environ. Sci. Biotechnol. 2, 147-168. crossref(new window)

Batte, M., Mathieu, L., Laurent, P., and Prevost, M. 2003b. Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization. Can. J. Microbiol. 49, 741-753. crossref(new window)

Boe-Hansen, R., Albrechtsen, H.J., Arvin, E., and Jorgensen, C. 2002a. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res. 36, 4477-4486. crossref(new window)

Boe-Hansen, R., Albrechtsen, H.J., Arvin, E., and Jorgensen, C. 2002b. Dynamics of biofilm formation in a model drinking water distribution system. J. Water Supply Res. Technol. AQUA 51, 399-406. crossref(new window)

Codony, F., Morato, J., and Mas, J. 2005. Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Res. 39, 1896-1906. crossref(new window)

Dang, H. and Lovell, C.R. 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66, 467-475. crossref(new window)

Donlan, R.M. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881-890. crossref(new window)

Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., and Franson, M.A.H. 2005. Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., USA.

Flemming, H.C., Percival, S.L., and Walker, J.T. 2002. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. Water Supply 2, 271-280.

Hiraishi, A., Furuhata, K., Matsumoto, A., Koike, K.A., Fukuyama, M., and Tabuchi, K. 1995. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61, 2099-2107.

Kasahara, S., Maeda, K., and Ishikawa, M. 2004. Influence of phosphorus on biofilm accumulation in drinking water distribution systems. Water Sci. Technol. Water Supply 4, 389-398.

Keinanen, M.M., Martikainen, P.J., and Kontro, M.H. 2004. Microbial community structure and biomass in developing drinking water biofilms. Can. J. Microbiol. 50, 183-191. crossref(new window)

Koskinen, R., Ali-Vehmas, T., Kampfer, P., Laurikkala, M., Tsitko, I., Kostyal, E., Atroshi, F., and Salkinoja-Salonen, M. 2000. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J. Appl. Microbiol. 89, 687-696. crossref(new window)

Lee, W.H., Wahman, D.G., Bishop, P.L., and Pressman, J.G. 2011. Free chlorine and monochloramine application to nitrifying biofilm: comparison of biofilm penetration, activity, and viability. Environ. Sci. Technol. 45, 1412-1419. crossref(new window)

Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999-1007. crossref(new window)

Liu, R., Yu, Z., Zhang, H., Yang, M., Shi, B., and Liu, X. 2012. Diversity of bacteria and mycobacteria in biofilms of two urban drinking water distribution systems. Can. J. Microbiol. 58, 261-270. crossref(new window)

Mah, T.F.C. and O'Toole, G.A. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34-39. crossref(new window)

Manuel, C.M., Nunes, O.C., and Melo, L.F. 2007. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 41, 551-562. crossref(new window)

Mathieu, L., Bouteleux, C., Fass, S., Angel, E., and Block, J.C. 2009. Reversible shift in the ${\alpha}$-, ${\beta}$- and ${\gamma}$-proteobacteria populations of drinking water biofilms during discontinuous chlorination. Water Res. 43, 3375-3386. crossref(new window)

McCoy, S.T. and VanBriesen, J.M. 2012. Temporal variability of bacterial diversity in a chlorinated drinking water distribution system. J. Environ. Eng. 138, 786-795. crossref(new window)

Melo, L.F. and Vieira, M.J. 1999. Physical stability and biological activity of biofilms under turbulent flow and low substrate concentration. Bioprocess Eng. 20, 363-368. crossref(new window)

Morato, J., Mir, J., Codony, F., Mas, J., and Ribas, F. 2003. Microbial response to disinfectants, pp. 657-693. In Mara, D. and Horan, N. (eds.), The Handbook of Water and Wastewater Microbiology. Academic Press, London, UK.

Ollos, P.J., Huck, P.M., and Slawson, R.M. 2003. Factors affecting biofilm accumulation in model distribution systems. J. Am. Water Works Assoc. 95, 87-97. crossref(new window)

Pereira, M.O., Kuehn, M., Wuertz, S., Neu, T., and Melo, L.F. 2002. Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm. Biotechnol. Bioeng. 78, 164-171. crossref(new window)

Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94-100. crossref(new window)

Simoes, L.C. and Simoes, M. 2013. Biofilms in drinking water: problems and solutions. RSC Adv. 3, 2520-2533. crossref(new window)

Srinivasan, S., Harrington, G.W., Xagoraraki, I., and Goel, R. 2008. Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Res. 42, 3393-3404. crossref(new window)

Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187-209. crossref(new window)

van der Kooij, D., Vrouwenvelder, H.S., and Veenendaal, H.R. 1995. Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Sci. Technol. 32, 61-65.

Vaz-Moreira, I., Nunes, O.C., and Manaia, C.M. 2011. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl. Environ. Microbiol. 77, 5697-5706. crossref(new window)

Wang, H., Hu, C., Hu, X., Yang, M., and Qu, J. 2012. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res. 46, 1070-1078. crossref(new window)

Wingender, J. and Flemming, H.C. 2011. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 214, 417-423. crossref(new window)