JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Isolation and characterization of marine bacteria with alginate degrading activity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation and characterization of marine bacteria with alginate degrading activity
Yoon, Young-Jun; Kim, Jung-Wan;
  PDF(new window)
 Abstract
As an effort to utilize alginate, 103 bacterial isolates that were positive for the alginate lyase activity were isolated from various clams and seawater samples collected in Incheon coastal area. Among them, 3 strains (M1-2-1, M6-1, and C8-15) were finally selected for further analysis based on their activities at higher levels than others. These isolates were all Gram-negative and rod shaped halophilic bacteria with motility. According to their physiological and biochemical properties as well as DNA sequence of their 16S rRNA genes, M1-2-1 and M6-1 were identified as a member of genus Pseudoalteromonas and C8-15 belonged to genus Vibrio. They exhibited the alginate degrading activity at the maximal level when they were cultured in APY broth for 6-8 h at . Both their growth and the enzyme activity were greatly enhanced when NaCl was added to the growth medium. The crude alginate lyases from the supernatants of the bacterial cultures showed the highest activity at and pH 7.0-8.0. M1-2-1 and M6-1 produced 2.723 and 1.976 g/L of reducing sugar from alginate, respectively, suggesting that they have potential for commercial application.
 Keywords
Pseudoalteromonas sp.;Vibrio sp.;alginate;alginate lyase;brown algae;
 Language
Korean
 Cited by
 References
1.
Baxter, R.M. 1959. An interpretation of the effect of salts on the lactic dehydrogenase of Halobacterium salinarium. Can. J. Microbiol. 5, 47-57. crossref(new window)

2.
Choi, D., Piao, Y.L., Shin, W.S., and Cho, H. 2009. Production of oligosaccharide from alginate using Pseudomonas agarovorans. Appl. Biochem. Biotechnol. 159, 438-452. crossref(new window)

3.
Cote, G.L. and Krull, L.H. 1988. Characterization of the extracellular polysaccharide from Azotobacter chroococcum. Carbohydr. Res. 181, 143-152. crossref(new window)

4.
Fisher, F.G. and Dorfel, H. 1955. The polyuronic acids of brown algae. Part I. Z. Physiol. Chem. 302, 186-203. crossref(new window)

5.
Gacesa, P. 1988. Alginates. Carbohydr. Polym. 8, 161-182. crossref(new window)

6.
Gacesa, P. and Wusteman, F.S. 1990. Plate assay for simultaneous detection of alginate lyase and determination of substrate specificity. Appl. Environ. Microbiol. 56, 2265-2267.

7.
Guven, K.C., Ozsoy, Y., and Ulutin, O.N. 1991. Anticoagulant, fibrinolytic and antiaggregant activity of carrageenans and alginic acid. Botan. Marin. 34, 429-435.

8.
Holt, J.G., Krieg, N.R., Sneaht, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey's Manual of Determinative Bacteriology, 9th, Williams Wilkins, USA.

9.
John, R.P., Anisha, G.S., Nampoothiri, K.M., and Pandey, A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186-193. crossref(new window)

10.
Joo, D.S., Cho, S.Y., and Lee, E.H. 1993. Isolation of alginatedegrading bacteria and production of alginate degrading activities by the bacteria. Korean J. Microbiol. Biotechnol. 21, 207-213.

11.
Joo, D.S., Lee, J.S., Park, J.J., Cho, S.Y., Ahn, C.B., and Lee, E.H. 1995. Purification and characterization of the intracellular alginase from Vibrio sp. AL-145. Korean J. Appl. Microbiol. Biotechnol. 23, 432-438.

12.
Joo, D.S., Lee, J.S., Park, J.J., Cho, S.Y., Kim, H.K., and Lee, E.H. 1996. Preparation of oligosaccharides from alginic acid enzymatic hydrolysis. Korean J. Food Sci. Technol. 28, 146-151.

13.
Jung, J.Y., Hur, S.S., and Choi, Y.H. 1999. Studies on the efficient extraction process of alginic acid in sea tangle. Food Eng. Prog. 3, 90-97.

14.
Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. crossref(new window)

15.
Kim, B.J., Ha, S.D., Lim, D.J., Song, C., and Kong, J.Y. 1998. Production of agarase from marine bacterium Bacillus cereus ASK202. Korean J. Biotechnol. Bioeng. 13, 524-529.

16.
Kim, J., Kim, Y., Kim, S., Kim, B., and Nam, S. 2011. Properties and industrial applications of seaweed polysaccharides-degrading enzymes from the marine microorganisms. Korean J. Microbiol. Biotechnol. 39, 189-199.

17.
Kim, H.K., Lee, J.C., Kang, N.H., Kim, S.H., Kim, J.G., and Chung, K.C. 2007. Purification and characterization of the extracellular alginate lyase from Streptomyces sp. MET 0515. J. Life Sci. 17, 625-633. crossref(new window)

18.
Kim, D.E., Lee, E.Y., and Kim, H.S. 2009. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 11, 10-16. crossref(new window)

19.
Kim, O.J., Lee, D., Lee, S., Lee, S.J., Do, H.J., Park, H.J., Kim, A., Lee, J., and Ha, J. 2010. Isolation and characterization of alginatedegrading Methyobacterium sp. HJM27. Korean J. Microbiol. Biotechnol. 38, 144-150.

20.
Kitamikado, M., Yamaguchi, K., Tseng, C., and Koabe, B. 1990. Method designed to detect alginate-degrading bacteria. Appl. Environ. Microbiol. 56, 2339-2940.

21.
Lee, B.H., Lee, S.B., and Kim, W.K. 2009a. Alginate fiber. Fiber Technol. Ind. 13, 21-24.

22.
Lee, J.H., Bae, M.J., Kim, Y., and Nam, S. 2009b. Identification and characterization of alginate lyase producing Pseudomonas sp. N7151-6. Korean J. Microbiol. Biotechnol. 37, 350-354.

23.
Lee, K.E., Lee, J.Y., and Kim, K. 2008. Effect of content of crop component on the bioethanol production. Korean J. Crop Sci. 53, 339-346.

24.
Lee, S., Oh, Y., Kim, D., Kwon, D., Lee, C., and Lee, J. 2011. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl. Biochem. Biotechnol. 164, 878-888. crossref(new window)

25.
Li, L., Jiang, X., Guan, H., Wang, P., and Guo, H. 2011. Three alginate lyases from marine bacterium Pseudomonas fluorescens HZJ216: Purification and characterization. Appl. Biochem. Biotechnol. 164, 305-317. crossref(new window)

26.
Li, S., Yang, X., Zhang, L., Yu, W., and Han, F. 2015. Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marin bacterium Agarivorans sp. L11. J. Microbiol. Biotechnol. 25, 681-686. crossref(new window)

27.
Miller, G.L. 1959. Use of dinitrosalycylic acid reagent for determination by reducing sugar. Anal. Chem. 31, 426-428. crossref(new window)

28.
Nam, Y.D., Chang, H.W., Park, J.R., Kwon, H.Y., Quan, Z.X., Park, Z.X., Lee, J.S., Yoon, J.H., and Bae, J.W. 2007. Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int. J. Syst. Evol. Microbiol. 57, 12-18. crossref(new window)

29.
Park, J.I., Woo, H.C., and Lee, J.H. 2008. Production of bio-energy from marine algae : status and perspectives. Korean Chem. Eng. Res. 46, 833-844.

30.
Powell, L.C., Sowedan, A., Khan, S., Wright, C.J., Hawkins, K., Onsoyen, E., Myrovold, R., Hill, K.E., and Thomas, D.W. 2013. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling 29, 413-421. crossref(new window)

31.
Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylo-genetic trees. Mol. Biol. Evol. 4, 406-425.

32.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. crossref(new window)

33.
Terakado, S., Ueno, M., Tamura, Y., Tada, N., Yoshinaga, M., Otsuka, K., Numabe, A., Kawabata, Y., Murota, I., Sato, N., and Uehara, Y. 2012. Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clin. Exp. Hypertens. 34, 99-106. crossref(new window)

34.
Tomoo, S., Hiromasa, T., Yoshio, E., and Gacesab, P. 2001. Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res. 335, 11-21. crossref(new window)

35.
Ueno, M., Tamura, Y., Toda, N., Yoshinaga, M., Terakado, S., Otsuka, K., Numabe, A., Kawabata, Y., Murota, I., Sato, N., et al. 2012. Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin. Exp. Hypertens. 34, 305-310. crossref(new window)

36.
Uo, M.H., Joo, D.S., and Cho, S.Y. 2006a. Screening and cultivation characterization of alginate degrading bacteria. J. Korean Soc. Food Sci. Nutr. 35, 109-114. crossref(new window)

37.
Uo, M.H., Joo, D.S., Cho, S.Y., and Min, T.S. 2006b. Purification and characterization of extracellular alginase produced by Bacillus lichenifomis AL-577. J. Korean Soc. Food Sci. Nutr. 35, 231-237. crossref(new window)

38.
Wong, T.Y., Preston, L.A., and Schiller, N.L. 2000. Alginate lyase: review of major sources and enzyme characteristics, structurefunction analysis, biological roles, and applications. Annu. Rev. Microbiol. 54, 289-340. crossref(new window)

39.
Yan, G.L., Guo, Y.M., Yuan, J.M., Liu, D., and Zhang, B.K. 2011. Sodium alginate oligosaccharides from brown algae inhibit Salmonella enteritidis colonization in broiler chickens. Poult. Sci. 90, 1441-1448. crossref(new window)

40.
Yokose, T., Nishikawa, T., Yamamoto, Y., Yamasake, Y., Yamaguchi, K., and Oda, T. 2009. Growth-promoting effect of alginate oligosaccharides on a unicellular marine microalga, Nannochloropsis oculata. Biosci. Biotechnol. Biochem. 73, 450-453. crossref(new window)

41.
Yoon, Y.J., Im, K.H., Koh, Y.H., Kim, S.K., and Kim, J.W. 2003. Genotyping of six pathogenic Vibrio species based RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41, 312-319.

42.
Zhu, B. and Yin, H. 2015. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6, 125-131. crossref(new window)