Advanced SearchSearch Tips
Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso
Koh, Hyeon-Woo; Kim, So-Jeong; Rhee, Sung-Keun; Park, Soo-Je;
  PDF(new window)
Most of halophilic archaea are found in the various hypersaline environments including solar saltern, salt lake with very high salt concentration. The present study is about isolation and characterization of halphilic archaea from Gomso solar saltern known as a representative high salt environment in Korea. In order to isolate the halophilic archaea, we prepared and used high salt medium. Finally, total 7 strains obtained were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological traits. All halophilic archaea belonged to Haloruburm, Halogeometriucm, Halobacterium, and Haloarcula genera. These isolates were all Gram-staining negative, and growth was not observed using nitrate as an alternative electron acceptor under anaerobic conditions. In addition, all isolates required about 12-30% (w/v, NaCl) salt. This case study might provide basic information on microbial isolation technologies and related research in halophilic microorganisms from domestic halophilic environments, and contribute to obtaining useful indigenous halophilic archaea in a variety of extreme environmental conditions.
Gomso solar saltern;halophilic archaea;
 Cited by
Bonfa, M.R., Grossman, M.J., Mellado, E., and Durrant, L.R. 2011. Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84, 1671-1676. crossref(new window)

Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245-252. crossref(new window)

Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., Frischkorn, K.R., Tringe, S.G., Singh, A., Markillie, L.M., et al. 2015. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690-701. crossref(new window)

DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689. crossref(new window)

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376. crossref(new window)

Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416. crossref(new window)

Grant, W.D., Kamekura, M., McGenity, T.J., and Ventosa, A. 2001. Class III. Halobacteria class. nov. The Archaea and the Deeply Branching and Phototrophic Bacteria. In Boone, D.R., Castenholz, R.W., and Garrity, G.M. (eds.), Bergey's Manual of Systematic Bacteriology, 2 (ed.)Vol. 1, pp. 294-334. Springer-Verlag, New York, USA.

Guy, L. and Ettema, T.J. 2011. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580-587. crossref(new window)

Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.

Oren, A. 2014. Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18, 825-834. crossref(new window)

Oren, A. 2015. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 33, 119-124. crossref(new window)

Oren, A., Ventosa, A., and Grant, W. 1997. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Evol. Microbiol. 47, 233-238.

Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.

Sehgel, S.N. and Gibbons, N.E. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6, 165-169. crossref(new window)

Smibert, R.M. and krieg, N.R. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Kreig, N.R. (eds.), Methods for general and molecular bacteriology, Vol. 1325, pp. 607-654. American Society for Microbiology, Washington, D.C., USA.

Spang, A., Martijn, J., Saw, J.H., Lind, A.E., Guy, L., and Ettema, T.J. 2013. Close encounters of the third domain: the emerging genomic view of archaeal diversity and evolution. Archaea 2013, 202358.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. crossref(new window)

Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504-544.

Ventosa, A., Quesada, F., Rodriiguez, F.V., Ruiz, B.Q.F., and Ramos, C.A. 1982. Numerical taxonomy of moderately Gram negative rods. J. Gen. Microbiol. 128, 1959-1968.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. crossref(new window)

Widdel, F. and Bak, F. 1992. Gram-negative mesophilic sulfatereducing bacteria, pp. 3352-3378. In Balows, A., Truper, H., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.), The Prokaryotes. Springer New York, USA.

Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088-5090. crossref(new window)

Woese, C.R., Kandler, O., and Wheelis, M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576-4579. crossref(new window)