Advanced SearchSearch Tips
Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria
Lim, Eun-Seo;
  PDF(new window)
Isolates from Korean fermented soybean paste were identified as Enterococcus faecium SBP12, Pediococcus halophilus SBP20, Lactobacillus fermentum SBP33, Leuconostoc mesenteroides SBP37, Pediococcus pentosaceus SBP41, Lactobacillus brevis SBP49, Lactobacillus acidophilus SBP55, and Enterococcus faecalis SBP58 according to conventional morphological and biochemical characteristics, carbohydrate fermentation profiling, and 16S rRNA sequence comparison. Strain SBP20, SBP33, SBP49, and SBP55 showed very resistance to simulated gastric and intestinal juices with final populations exceeding 6 log CFU/ml, whereas cells of SBP12 and SBP58 after exposure to low pH were dramatically decreased within 2 h. Among 4 strains having good tolerance to gastrointestinal conditions, the high adhesive ability to HT-29 cells, antibiotic resistance, and antimicrobial activity against food-borne pathogens Bacillus cereus ATCC 11778 and Staphylococcus aureus ATCC 6538 were observed with SBP49 and SBP55, therefore, these two strains were confirmed as putative probiotic candidates. There was no significant difference between the sourdoughs fermented with SBP49 and SBP55 with respect to the values of pH, total titratable acidity, and viable cell count. During sourdough fermentation, SBP49 strain produced significantly greater amounts of lactic acid than SBP55 strain, which secreted large quantities of hydrogen peroxide. SBP49 and SBP55 strains producing the antimicrobial substances such as lactic acid, hydrogen peroxide, and bacteriocin effectively inhibited B. cereus and S. aureus inoculated in the sourdough.
antimicrobial activity;bacteriocin;lactic acid;probiotic;sourdough;
 Cited by
이상발효유산균과 내산성 효모와의 혼합배양이 사워도우의 저장성에 미치는 영향,임은서;

한국미생물학회지, 2016. vol.52. 4, pp.471-481 crossref(new window)
Preparation and functional properties of probiotic and oat-based synbiotic yogurts fermented with lactic acid bacteria, Applied Biological Chemistry, 2017  crossref(new windwow)
Effect of the mixed culture of heterofermentative lactic acid bacteria and acid-tolerant yeast on the shelf-life of sourdough, The Korean Journal of Microbiology, 2016, 52, 4, 471  crossref(new windwow)
Ali, A.A. 2010. Beneficial role of lactic acid bacteria in food preservation and human health : a review. Res. J. Microbiol. 5, 1213-1221. crossref(new window)

Arendt, E.K., Ryan, L.A.M., and Dal Bello, F. 2007. Impact of sourdough on the texture of bread. Food Microbiol. 24, 165-174. crossref(new window)

Argyri, A.A., Zoumpopoulou, G., Karatzas, K.A.G., Tsakalidou, E., Nychas, G.J.E., Panagou, E.Z., and Tassou, C.C. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291. crossref(new window)

Ashraf, R. and Shah, N.P. 2011. Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int. Food Res. J. 18, 837-853.

Barber, S. and Baguena, R. 1989. Microflora of the sourdough of wheat flour bread. XI. Changes during fermentation in the microflora of sourdoughs prepared by multi-stage process and of bread doughs. Rev. Agroquim. Technol. Aliment. 29, 478-491.

Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493-496. crossref(new window)

Caplice, E. and Fitzgerald, G.F. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50, 131-149. crossref(new window)

Cebrian, R., Banos, A., Valdivia, E., Perez-Pulido, R., Martinez-Bueno, M., and Maqueda, M. 2012. Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol. 30, 59-67. crossref(new window)

Chavan, R.S. and Chavan, S.R. 2011. Sourdough Technology- a traditional way for wholesome foods: a review. Compr. Rev. Food Sci. F. 10, 170-183.

Cho, K.M. and Seo, W.T. 2007. Bacterial diversity in Korean traditional soybean fermented foods (doenjang and ganjang) by 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 16, 320-324.

Choi, H.J., Kim, Y.W., Hwang, I.Y., Kim, J.H., and Yoon, S. 2012. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134, 2208-2216. crossref(new window)

Corsetti, A., Gobbetti, M., Rossi, J., and Damiani, P. 1998. Antimould activity of sourdough lactic acid bacteria: identification of mixture of organic acids produced by Lactobacillus sanfrancisco CBI. Appl. Microbiol. Biotechnol. 50, 253-256. crossref(new window)

Corsetti, A., Gobbetti, M., and Smacchi, E. 1996. Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13, 447-456. crossref(new window)

Corsetti, A. and Settanni, L. 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539-558. crossref(new window)

Corsetti, A., Settanni, L., and Van Sinderen, D. 2004. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 96, 521-534. crossref(new window)

De Vuyst, L. and Neysens, P. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16, 43-56. crossref(new window)

De Vuyst, L. and Vancanneyt, M. 2007. Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol. 24, 120-127. crossref(new window)

Ehrmann, M.A., Kurzak, P., Bauer, J., and Vogel, R.F. 2002. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 92, 966-975. crossref(new window)

Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. crossref(new window)

Ganzle, M.G., Holtzel, A., Walter, J., Jung, G., and Hammes, W.P. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol. 66, 4325-4333. crossref(new window)

Gilliland, S.E. 1969. Enzymatic determination of residual hydrogen peroxide in milk. J. Dairy Sci. 52, 321-324. crossref(new window)

Gobbetti, M. 1998. The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9, 267-274. crossref(new window)

Gobbetti, M., De Angelis, M., Corsetti, A., and Di Cagno, R. 2005. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Technol. 16, 57-59. crossref(new window)

Hammes, W.P., Brandt, M.J., Francis, K.L., Rosenheim, M., Seitter, F.H., and Vogelmann, S. 2005. Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 16, 4-11. crossref(new window)

Heller, J.K. 2001. Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am. J. Clin. Nutr. 73, 374S-379S. crossref(new window)

Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. crossref(new window)

Jeong, D.W., Kim, H.R., Jung, G.S., Han, S.H., Kim, C.T., and Lee, J.H. 2014. Bacterial community migration in the ripening of Doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24, 648-660. crossref(new window)

Kashket, E.R. 1987. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46, 233-244. crossref(new window)

Katina, K., Sauri, M., Alakomi, H.L., and Mattila-Sandholm, T. 2002. Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. LWT-Food Sci. Technol. 35, 38-45. crossref(new window)

Kawai, Y., Saito, T., Toba, T., Samant, S.K., and Itoh, T. 1994. Isolation and characterization of a highly hydrophobic new bacteriocin (gassericin A) from Lactobacillus gasseri LA39. Biosci. Biotech. Biochem. 58, 1218-1221. crossref(new window)

Lorca, G.L., Wadstrom, T., Valdez, G.F., and Ljungh, A. 2001. Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro. Curr. Microbiol. 42, 39-44. crossref(new window)

Luangsakul, N., Keeratipibul, S., Jindamorakot, S., and Tanasupawat, S. 2009. Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand. LWT-Food Sci. Technol. 42, 1404-1412. crossref(new window)

Maragkoudakis, P.A., Zoumpopoulou, G., Christos, M., Kalantzopoulos, G., Pot, B., and Tsakalidou, E. 2006. Probiotic potential of Lactobacillus strains isolates from dairy products. Int. Dairy J. 16, 189-199. crossref(new window)

Messens, W. and De Vuyst, L. 2002. Inhibitory substances produced by lactobacilli isolated from sourdoughs - a review. Int. J. Food Microbiol. 72, 31-43. crossref(new window)

Mundt, J.O. 1986. Lactobacillus, pp. 577-592. In Sneath, P.H.A., Mair, N.S., Sharpe, M.E., and Holt, J.G. (eds.) Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, MS, USA.

Oh, Y.J. and Jung, D.S. 2015. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolation from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT-Food Sci. Technol. 63, 437-444. crossref(new window)

Otero, M.C. and Nader-Macias, M.E. 2006. Inhibition of Staphylococcus aureus by $H_2O_2$-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 96, 35-46. crossref(new window)

Ouwehand, A.C. and Salminen, S. 2003. In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb. Ecol. Health D. 15, 175-184. crossref(new window)

Paramithiotis, S., Gioulatos, S., Tsakalidou, E., and Kalantzopoulos, G. 2006. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 41, 2429-2433. crossref(new window)

Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A.A., Marchant, R., and Banat, I.M. 2008. Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii spp. bulgaricus and Lactobacillus helveticus. Bioresource Technol. 99, 5951-5955. crossref(new window)

Ranadheera, R.D.C.S., Baines, S.K., and Adams, M.C. 2010. Importance of food in probiotic efficacy. Food Res. Int. 43, 1-7. crossref(new window)

Rocha, J.M. and Malcata, F.W. 2012. Microbiological profile of maize and rye flours, and sourdough used for the manufacture of traditional Portuguese bread. Food Microbiol. 31, 72-88. crossref(new window)

Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84, 197-215. crossref(new window)

Salminen, S., Isolauri, E., and Salminen, E. 1996. Probiotics and stabilization of the gut mucosal barrier. Asia Pacific J. Clin. Nutr. 5, 53-56.

Servin, A.L. and Coconnier, M.H. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17, 741-754. crossref(new window)

Settanni, L., Massitti, O., Van Sinderen, D., and Corsetti, A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681. crossref(new window)

Sgouras, D., Maragkoudakis, P., Petraki, K., Martine-Gonzalez, B., Eriotou E., Michopoulas, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strains Shirota. Appl. Environ. Microbiol. 70, 518-526. crossref(new window)

Shah, N.P. and Ravula, R.R. 2002. Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. Aust. J. Dairy Technol. 55, 127-131. crossref(new window)

Shokryazdan, P., Sieo, C.C., Kalavathy, R., Liang, J.B., Alitheen, N.B., Jahromi, M.F., and Ho, Y.W. 2014. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed. Res. Int. 2014, 1-16.

Soccol, C.R., De Souza Vandenberghe, L.P., Spier, M.R., Medeiros, A.B.P., Yamaguichi, C.T., De Dea Lindner, J., Pandey, A., and Thomaz-Soccol, V. 2010. The potential of probiotics: a review. Food Technol. Biotechnol. 48, 413-434.

Spicher, G. and Mastik, G. 1988. Interactions between the lactobacilli of sourdough and flour microflora. Getreide Mehl. Brot. 42, 338-342.

Spicher, G., Rabe, E., Sommer, R., and Stephan, H. 1981. The microflora of sourdough.XIV. Communication: About the behavior of homofermentative sourdough bacteria and yeasts in mixed culture. Z. Lebensm. Unters. Forsch. 173, 291-296. crossref(new window)

Suskovic, J., Kos, B., Beganovic, J., Pavunc, A.L., Habjanic, K., and Matosic, S. 2010. Antimicrobial activity-the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol. 48, 296-307.

Theron, M.M. and Lues, J.F.R. 2010. Mechanisms of microbial inhibition, pp. 117-150. In Organic acids and food preservation. CRC Press, Boca Raton, USA.

Tuomola, E.M. and Salminen, S.J. 1998. Adhesion of some probiotic and diary Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol.41, 45-51. crossref(new window)

Velez, M.P., De Keersmaecker, S.C., and Vanderleyden, J. 2007. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 276, 140-148. crossref(new window)

Veskovic Moracanin, S., Dukic, D.A., and Memisi, N.R. 2014. Bacteriocins produced by lactic acid bacteria-a review. APTEFF 45, 271-283.

Vogel, R.F., Bocker, G., Stolz, P., Ehrmann, M., Fanta, D., Ludwig, W., Pot, B., Kersters, K., Schleifer, K.H., and Hammes, W.P. 1999. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int. J. System. Bacteriol. 44, 223-229.