JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Biofilm modeling systems
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Biofilm modeling systems
Kim, Soo-Kyoung; Lee, Joon-Hee;
  PDF(new window)
 Abstract
Biofilms are considered a complexly structured community of microorganisms derived from their attached growth to abiotic and biotic surfaces. In human life, they mediate serious infections and cause many problems in civil and industrial facilities. While it is of huge interest for scientists to understand biofilms, it has been very hard to directly analyze the various biofilms in nature. A variety of biofilm models have been suggested for laboratory-scale biofilm formation and many methods based on these models are widely used for the biofilm researches. These biofilm models mimic characteristics of environmental biofilms with different advantages and disadvantages. In this review, we will introduce these currently used biofilm model systems and explain their relative merits.
 Keywords
batch culture;biofilm;biofilm model;Confocal Laser Scanning Microscope;continuous culture;flow cell;shear force;
 Language
Korean
 Cited by
 References
1.
Aas, J.A., Paster, B.J., Stokes, L.N., Olsen, I., and Dewhirst, F.E. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721-5732. crossref(new window)

2.
Adetunji, V.O. and Odetokun, I.A. 2012. Assessment of biofilm in E. coli O157:H7 and Salmonella strains: Influence of cultural conditions. Am. J. Food Technol. 7, 582-595. crossref(new window)

3.
Al-Ahmad, A., Wunder, A., Auschill, T.M., Follo, M., Braun, G., Hellwig, E., and Arweiler, N.B. 2007. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by fivecolour multiplex fluorescence in situ hybridization. J. Med. Microbiol. 56, 681-687. crossref(new window)

4.
Ali, A., Khambaty, F., and Diachenko, G. 2006. Investigating the suitability of the Calgary Biofilm Device for assessing the antimicrobial efficacy of new agents. Bioresour. Technol. 97, 1887-1893. crossref(new window)

5.
Allesen-Holm, M., Barken, K.B., Yang, L., Klausen, M., Webb, J.S., Kjelleberg, S., Molin, S., Givskov, M., and Tolker-Nielsen, T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59, 1114-1128. crossref(new window)

6.
Amorena, B., Gracia, E., Monzon, M., Leiva, J., Oteiza, C., Perez, M., Alabart, J.L., and Hernandez-Yago, J. 1999. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 44, 43-55. crossref(new window)

7.
Anderl, J.N., Franklin, M.J., and Stewart, P.S. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818-1824. crossref(new window)

8.
Anderson, G.G., Palermo, J.J., Schilling, J.D., Roth, R., Heuser, J., and Hultgren, S.J. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105-107. crossref(new window)

9.
Benoit, M.R., Conant, C.G., Ionescu-Zanetti, C., Schwarz, M., and Matin, A. 2010. New device for high-throughput viability screening of flow biofilms. Appl. Environ. Microbiol. 76, 4136-4142. crossref(new window)

10.
Bjarnsholt, T., Jensen, P.O., Fiandaca, M.J., Pedersen, J., Hansen, C.R., Andersen, C.B., Pressler, T., Givskov, M., and Hoiby, N. 2009. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547-558. crossref(new window)

11.
Boulos, L., Prevost, M., Barbeau, B., Coallier, J., and Desjardins, R. 1999. LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37, 77-86. crossref(new window)

12.
Buckingham-Meyer, K., Goeres, D.M., and Hamilton, M.A. 2007. Comparative evaluation of biofilm disinfectant efficacy tests. J. Microbiol. Methods 70, 236-244. crossref(new window)

13.
Buckingham-Meyer, K., Heersink, J., Pitts, B., Rayner, J., and Werner, E. 2003. Alternative biofilm growth reactors. In Hamilton, M., Heersink, J., Buckingham-Meyer, K., and Goeres, D. (eds.), The biofilm laboratory: Step-by-step protocols for experimental design, analysis, and data interpretation, pp. 31-51. Cytergy Publishing, Bozeman, USA.

14.
Chalfie, M., Tu, Y., Euskirchen, G., and Ward, W.W. 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805. crossref(new window)

15.
Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., and Ghannoum, M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J. Bacteriol. 183, 5385-5394. crossref(new window)

16.
Cloete, T.E., Brozel, V.S., and Von Holy, A. 1992. Practical aspects of biofouling control in industrial water systems. Int. Biodeterior. Biodegrad. 29, 299-341. crossref(new window)

17.
Colvin, K.M., Gordon, V.D., Murakami, K., Borlee, B.R., Wozniak, D.J., Wong, G.C.L., and Parsek, M.R. 2011. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7, e1001264. crossref(new window)

18.
Conant, C.G., Schwartz, M.A., and Ionescu-Zanetti, C. 2010. Well plate-coupled microfluidic devices designed for facile image-based cell adhesion and transmigration assays. J. Biomol. Screen 15, 102-106. crossref(new window)

19.
De La Fuente, L., Montanes, E., Meng, Y., Li, Y., Burr, T.J., Hoch, H.C., and Wu, M. 2007. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl. Environ. Microbiol. 73, 2690-2696. crossref(new window)

20.
De Prijck, K., De Smet, N., Rymarczyk-Machal, M., Van Driessche, G., Devreese, B., Coenye, T., Schacht, E., and Nelis, H.J. 2010. Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane. Biofouling 26, 269-275. crossref(new window)

21.
De Prijck, K., Nelis, H., and Coenye, T. 2007. Efficacy of silver-releasing rubber for the prevention of Pseudomonas aeruginosa biofilm formation in water. Biofouling 23, 405-411. crossref(new window)

22.
Diaz, P.I., Chalmers, N.I., Rickard, A.H., Kong, C., Milburn, C.L., Palmer, R.J.Jr., and Kolenbrander, P.E. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72, 2837-2848. crossref(new window)

23.
Dietrich, L.E., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D.K. 2006. The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308-1321. crossref(new window)

24.
Dige, I., Nilsson, H., Kilian, M., and Nyvad, B. 2007. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci. 115, 459-467. crossref(new window)

25.
Dige, I., Raarup, M.K., Nyengaard, J.R., Kilian, M., and Nyvad, B. 2009. Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155, 2116-2126. crossref(new window)

26.
Donlan, R.M. and Costerton, J.W. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167-193. crossref(new window)

27.
Donlan, R.M., Piede, J.A., Heyes, C.D., Sanii, L., Murga, R., Edmonds, P., El-Sayed, I., and El-Sayed, M.A. 2004. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl. Environ. Microbiol. 708, 4980-4988.

28.
Elkins, J.G., Hassett, D.J., Stewart, P.S., Schweizer, H.P., and McDermott, T.R. 1999. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl. Environ. Microbiol. 65, 4594-4600.

29.
Eun, Y.J. and Weibel, D.B. 2009. Fabrication of microbial biofilm arrays by geometric control of cell adhesion. Langmuir 25, 4643-4654. crossref(new window)

30.
Freitas, A.I., Vasconcelos, C., Vilanova, M., and Cerca, N. 2013. Optimization of an automatic counting system for the quantification of Staphylococcus epidermidis cells in biofilms. J. Basic Microbiol. 54, 750-757.

31.
Friedman, L. and Kolter, R. 2004a. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51, 675-690.

32.
Friedman, L. and Kolter, R. 2004b. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186, 4457-4465. crossref(new window)

33.
Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34-40. crossref(new window)

34.
Goeres, D.M., Hamilton, M.A., Beck, N.A., Buckingham-Meyer, K., Hilyard, J.D., Loetterle, L.R., Lorenz, L.A., Walker, D.K., and Stewart, P.S. 2009. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4, 783-788. crossref(new window)

35.
Goeres, D.M., Loetterle, L.R., Hamilton, M.A., Murga, R., Kirby, D.W., and Donlan, R.M. 2005. Statistical assessment of a laboratory method for growing biofilms. Microbiology 151, 757-762. crossref(new window)

36.
Hadi, R., Vickery, K., Deva, A., and Charlton, T. 2010. Biofilmremoval bymedical device cleaners: comparison of two bioreactor detection assays. J. Hosp. Infect. 74, 160-167. crossref(new window)

37.
Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95-108. crossref(new window)

38.
Hannig, C., Hannig, M., Rehmer, O., Braun, G., Hellwig, E., and Al-Ahmad, A. 2007. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch. Oral Biol. 52, 1048-1056. crossref(new window)

39.
Hans-Curt, F. and Jost, W. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623-633. crossref(new window)

40.
Heersink, J. and Goeres, D. 2003. Reactor design considerations. In Hamilton, M., Heersink, J., Buckingham-Meyer, K., and Goeres, D. (eds.), The Biofilm Laboratory: Step-by-step Protocols for Experimental Design, Analysis, and Data Interpretation, pp. 13-15. Cytergy Publishing, Bozeman, USA.

41.
Heilmann, C., Gerke, C., Perdreau-Remington, F., and Gotz, F. 1996. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64, 277-282.

42.
Heydorn, A., Ersboll, B.K., Hentzer, M., Parsek, M.R., Givskov, M., and Molin, S. 2000a. Experimental reproducibility in flowchamber biofilms. Microbiology 146, 2409-2415. crossref(new window)

43.
Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., and Molin, S. 2000b. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146, 2395-2407. crossref(new window)

44.
Im, S.J. 2011. Differential regulation of genes in Pseudomonas aeruginosa biofilm depending on spatial structure. Master thesis, Pusan National University.

45.
Janakiraman, V., Englert, D., Jayaraman, A., and Baskaran, H. 2009. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann. Biomed. Eng. 37, 1206-1216. crossref(new window)

46.
Jung, Y.G., Choi, J., Kim, S.K., Lee, J.H., and Kwon, S. 2015. Embedded biofilm, a ne biofilm model based on the embedded growth of bacteria. Appl. Environ. Microbiol. 81, 211-219. crossref(new window)

47.
Kim, J., Park, H.J., Lee, J.H., Hahn, J.S., Gu, M.B., and Yoon, J. 2009. Differential effect of chlorine on the oxidative stress generation in dormant and active cells within colony biofilm. Water Res. 43, 5252-5859. crossref(new window)

48.
Krom, B.P., Cohen, J.B., McElhaney Feser, G.E., and Cihlar, R.L. 2007. Optimized candida biofilm microtiter assay. J. Microbiol. Methods 68, 421-423. crossref(new window)

49.
Kwok, W.K., Picioreanu, C., Ong, S.L., van Loosdrecht, M.C.M., Ng, W.J., and Heijnen, J.J. 1998. Influence of biomass production and detachment force on biofilm structures in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 58, 400-407. crossref(new window)

50.
Lambertsen, L., Sternberg, C., and Molin, S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6, 726-732. crossref(new window)

51.
Lawrence, J.R., Neu, T.R., and Swerhone, G.D.W. 1998. Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J. Microbiol. Methods 32, 253-261. crossref(new window)

52.
Lazarova, V.Z., Capdeville, B., and Nikolov, L. 1992. Biofilm performance of a fluidized bed biofilm reactor for drinking water denitrification. Water Sci. Technol. 26, 555-666.

53.
Lee, J.H., Kaplan, J.B., and Lee, W.Y. 2008. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed. Microdevices 10, 489-498. crossref(new window)

54.
Mittelman, M.W., Nivens, D.E., Low, C., and White, D.C. 1990. Differential adhesion, activity and carbohydrate: protein ratios of Pseudomonas atlantica monocultures attaching to stainless steel in a linear shear gradient. Microb. Ecol. 19, 269-278. crossref(new window)

55.
Moller, S., Korber, D.R., Wolfaardt, G.M., Molin, S., and Caldwell, D.E. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. Environ. Microbiol. 63, 2432-2438.

56.
Niu, C. and Gilbert, E.S. 2004. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl. Environ. Microbiol. 70, 6951-6956. crossref(new window)

57.
O'Toole, G.A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 30, 2437.

58.
O'Toole, G.A. and Kolter, R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295-304. crossref(new window)

59.
O'Toole, G., Kaplan, H.B., and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49-79. crossref(new window)

60.
Palmer, R.J.Jr. 2010. Supragingival and subgingival plaque: paradigm of biofilms. Compend. Contin. Educ. Dent. 31, 104-106.

61.
Pamp, S.J., Sternberg, C., and Tolker-Nielsen, T. 2009. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75, 90-103.

62.
Peeters, E., Nelis, H.J., and Coenye, T. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72, 157-165. crossref(new window)

63.
Pitts, B., Hamilton, M.A., Zelver, N., and Stewart, P.S. 2003. A microtiter-plate screening method for biofilm disinfection and removal. J. Microbiol. Methods 54, 269-276. crossref(new window)

64.
Quave, C.L., Plano, L.R.W., Pantuso, T., and Bennett, B.C. 2008. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 118, 418-428. crossref(new window)

65.
Rice, K.C., Mann, E.E., Enders, J.L., Weiss, E.C., Cassat, J.E., Smeltzer, M.S., and Bayles, K.W. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104, 8113-8118. crossref(new window)

66.
Richter, L., Stepper, C., Mak, A., Reinthaler, A., Heer, R., Kast, M., Bruckl, H., and Ertl, P. 2007. Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab Chip 7, 1723-1731. crossref(new window)

67.
Schaudinn, C., Carr, G., Gorur, A., Jaramillo, D., Costerton, J.W., and Webster, P. 2009. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM). J. Microsc. 235, 124-127. crossref(new window)

68.
Shapiro, J.A. 1984. The use of Mudlac transposons as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces. J. Gen. Microbiol. 130, 1169-1181.

69.
Shen, Y., Stojicic, S., and Haapasalo, M. 2010. Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J. Endod. 36, 1820-1823. crossref(new window)

70.
Stepanovic, S., Djukic, V., Djordjevic, V., and Djukic, S. 2003. Influence of the incubation atmosphere on the production of biofilm by staphylococci. Clin. Microbiol. Infect. 9, 955-958. crossref(new window)

71.
Sternberg, C., Christensen, B.B., Johansen, T., Toftgaard Nielsen, A., Andersen, J.B., Givskov, M., and Molin, S. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108-4117.

72.
Stewart, P.S. and Franklin, M.J. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199-210. crossref(new window)

73.
Stewart, P.S., Murga, R., Srinivasan, R., and de Beer, D. 1995. Biofilm structural heterogenecity visualized by three microscopic methods. Water Res. 8, 2006-2009.

74.
Stewart, P.S., Rayner, J., Roe, F., and Rees, W.M. 2001. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91, 525-532. crossref(new window)

75.
Strathmann, M., Wingender, J., and Flemming, H.C. 2002. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Methods 50, 237-248. crossref(new window)

76.
Van den Driessche, F., Rigole, P., Brackman, G., and Coenye, T. 2014. Optimization of resazurin-based viability staining for quantification of microbial biofilms. J. Microbiol. Methods 98, 31-34. crossref(new window)

77.
Van Loosdrecht, M.C.M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L., and Heijnen, J.J. 1995. Biofilm structures. Water Sci. Technol. 32, 35-43.

78.
Vieira, M.J., Melo, L.F., and Phinheiro, M.M. 1993. Biofilm formation: hydrodynamic effects on internal diffusion and structure. Biofouling 7, 67-80. crossref(new window)

79.
Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., Caldwell, S.J., and Caldwell, D.E. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60, 434-446.

80.
Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P., Bellon, G., Berger, J., Weiss, T., et al. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317-325. crossref(new window)

81.
Wotton, R.S. and Preston, T.M. 2005. Surface films: areas of water bodies that are often overlooked. Bioscience 55, 137-145. crossref(new window)

82.
Yamamoto, K., Arai, H., Ishii, M., and Igarashi, Y. 2011. Trade-off between oxygen and iron acquisition in bacterial cells at the air-liquid interface. FEMS Microbiol. Ecol. 77, 83-94. crossref(new window)

83.
Yang, L., Haagensen, J.A.J., Jelsbak, L., Johansen, H.K., Sternberg, C., Hoiby, N., and Molin, S. 2008. In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J. Bacteriol. 190, 2767-2776. crossref(new window)

84.
Zelver, N., Hamilton, M., Pitts, B., Goeres, D., Walker, D., Sturman, P., and Heersink, J. 1999. Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol. 310, 608-628. crossref(new window)