JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Metagenomics analysis of methane metabolisms in manure fertilized paddy soil
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Metagenomics analysis of methane metabolisms in manure fertilized paddy soil
Nguyen, Son G.; Ho, Cuong Tu; Lee, Ji-Hoon; Unno, Tatsuya;
  PDF(new window)
 Abstract
Under flooded rice fields, methanogens produce methane which comes out through rice stalks, thus rice fields are known as one of the anthropogenic sources of atmospheric methane. Studies have shown that use of manure increases amount of methane emission from rice. To investigate mechanisms by which manure boosts methane emission, comparative soil metagenomics between inorganically (NPK) and pig manure fertilized paddy soils (PIG) were conducted. Results from taxonomy analysis showed that more abundant methanogens, methanotrophs, methylotrophs, and acetogens were found in PIG than in NPK. In addition, BLAST results indicated more abundant carbohydrate mabolisetm functional genes in PIG. Among the methane metabolism related genes, PIG sample showed higher abundance of methyl-coenzyme M reductase (mcrB/mcrD/mcrG) and trimethylamine-corrinoid protein Co-methyltransferase (mttB) genes. In contrast, genes that down regulate methane emission, such as trimethylamine monooxygenase (tmm) and phosphoserine/homoserine phosphotransferase (thrH), were observed more in NPK sample. In addition, more methanotrophic genes (pmoB/amoB/mxaJ), were found more abundant in PIG sample. Identifying key genes related to methane emission and methane oxidation may provide fundamental information regarding to mechanisms by which use of manure boosts methane emission from rice. The study presented here characterized molecular variation in rice paddy, introduced by the use of pig manure.
 Keywords
metagenomics;methane;methanogens;microbial community;rice;
 Language
English
 Cited by
 References
1.
Amaratunga, K., Goodwin, P.M., O'Connor, C.D., and Anthony, C. 1997. The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens. FEMS Microbiol. Lett. 146, 31-38. crossref(new window)

2.
Bao, Z., Watanabe, A., Sasaki, K., Okubo, T., Tokida, T., Liu, D., Ikeda, S., Imaizumi-Anraku, H., Asakawa, S., Sato, T., et al. 2014b. A rice gene for microbial symbiosis, Oryza sativa CCaMK, reduces CH4 flux in a paddy field with low nitrogen input. Appl. Environ. Microbiol. 80, 1995-2003. crossref(new window)

3.
Bao, Q., Xiao, K.Q., Chen, Z., Yao, H.Y., and Zhu, Y.G. 2014a. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiol. Ecol. 88, 372-385. crossref(new window)

4.
Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., and Larsson, D.G. 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648.

5.
Bengtsson-Palme, J., Hartmann, M., Eriksson, K.M., Pal, C., Thorell, K., Larsson, D.G., and Nilsson, R.H. 2015. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol. Ecol. Resour. 15, 1403-1414. crossref(new window)

6.
Birney, D.R.Z.a.E. 2011. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829.

7.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421. crossref(new window)

8.
Chen, Y., Patel, N.A., Crombie, A., Scrivens, J.H., and Murrell, J.C. 2011. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc. Natl. Acad. Sci. USA 108, 17791-17796. crossref(new window)

9.
Conrad, R., Erkel, C., and Liesack, W. 2006. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr. Opin. Biotechnol. 17, 262-267. crossref(new window)

10.
Conrad, R., Klose, M., Noll, M., Kemnitz, D., and Bodelier, P.L.F. 2008. Soil types links microbial colonization of rice roots to methane emission. Glob Change Biol. 14, 657-669. crossref(new window)

11.
Das, S. and Adhya, T.K. 2012. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated $CO_2$ and temperature interaction. Soil Biol. Biochem. 47, 36-45. crossref(new window)

12.
Das, S., Ghosh, A., and Adhya, T.K. 2011. Nitrous oxide and methane emission from a flooded rice field as influenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor. Chemosphere 84, 54-62. crossref(new window)

13.
Datta, A., Santra, S.C., and Adhya, T.K. 2013. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmospheric Environment 66, 123-130. crossref(new window)

14.
Drake, H.L., Gossner, A.S., and Daniel, S.L. 2008. Old acetogens, new light. Ann. N. Y. Acad. Sci. 1125, 100-128. crossref(new window)

15.
Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.a., and Sundaresan, V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911-E920. crossref(new window)

16.
Erkel, C., Kube, M., Reinhardt, R., and Liesack, W. 2006. Genome of rice cluster I archaea-the key methane producers in the rice rhizosphere. Science 313, 370-372. crossref(new window)

17.
Fenchel, T. 2011. Bacterial Ecology. DOI: 10.1002/9780470015902.a0000339.pub3. crossref(new window)

18.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., and Myhre, G. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis.

19.
Gaihre, Y., Wassmann, R., Pangga, G., and Aquino, E. 2012. Effect of elevated temperature and rice straw application on methane emission from lowland rice paddy soils. Philippine J. Crop Sci. (Philippines) 37, 10.

20.
Harms, U. and Thauer, R.K. 1996. Methylcobalamin: coenzyme M methyltransferase isoenzymes MtaA and MtbA from Methanosarcina barkeri. Cloning, sequencing and differential transcription of the encoding genes, and functional overexpression of the mtaA gene in Escherichia coli. Eur. J. Biochem. 235, 653-659. crossref(new window)

21.
Huson, D.H., Mitra, S., Ruscheweyh, H.J., Weber, N., and Schuster, S.C. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552-1560. crossref(new window)

22.
IPCC. 2007. IPCC fourth assessment report: climate change 2007 synthesis report.

23.
Jones, M., Talfournier, F., Bobrov, A., Grossmann, J.G., Vekshin, N., Sutcliffe, M.J., and Scrutton, N.S. 2002. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J. Biol. Chem. 277, 8457-8465. crossref(new window)

24.
Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42-46. crossref(new window)

25.
Kim, S.Y., Pramanik, P., Bodelier, P.L., and Kim, P.J. 2014. Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PLoS One 9, e113593. crossref(new window)

26.
Kruger, M. and Frenzel, P. 2003. Effect of N-fertilization on $CH_4$ oxidation and production, and consequences for $CH_4$ emissions from microcosms and rice fields. Glob Change Biol. 9, 773-784. crossref(new window)

27.
Lamendella, R., Domingo, J.W., Ghosh, S., Martinson, J., and Oerther, D.B. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11, 103. crossref(new window)

28.
Li, B. and Dewey, C.N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. crossref(new window)

29.
Li, X., Dodson, J., Zhou, J., and Zhou, X. 2009. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000 BP. Quat. Int. 202, 41-50. crossref(new window)

30.
Liou, R.M., Huang, S.N., and Lin, C.W. 2003. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 50, 237-246. crossref(new window)

31.
Lu, Z. and Lu, Y. 2012. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from chinese rice field soil. PLoS One 7, e35279. crossref(new window)

32.
Ma, K.E., Qiu, Q., and Lu, Y. 2010. Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biol. 16, 3085-3095.

33.
Maupin-Furlow, J.A. and Ferry, J.G. 1996. Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. J. Bacteriol. 178, 6849-6856. crossref(new window)

34.
Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386. crossref(new window)

35.
Mohanty, S.R., Bodelier, P.L.E., Floris, V., and Conrad, R. 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72, 1346-1354. crossref(new window)

36.
Muller, V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345-6353. crossref(new window)

37.
Muller, V. and Frerichs, J. 2013. Acetogenic Bacteria. In Encyclopedia of life sciences. www.els.net.

38.
Nguyen, S., Guevarra, R., Kim, J., Ho, C., Trinh, M., and Unno, T. 2015. Impacts of initial fertilizers and irrigation systems on paddy methanogens and methane emission. Water Air Soil Pollut. 226, 1-11.

39.
Pandey, A., Mai, V.T., Vu, D.Q., Bui, T.P.L., Mai, T.L.A., Jensen, L.S., and de Neergaard, A. 2014. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture Ecosystems & Environment 196, 137-146. crossref(new window)

40.
Peng, J., Lu, Z., Rui, J., and Lu, Y. 2008. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl. Environ. Microbiol. 74, 2894-2901. crossref(new window)

41.
Pritchett, M.A. and Metcalf, W.W. 2005. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol. Microbiol. 56, 1183-1194. crossref(new window)

42.
Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H., and Kamagata, Y. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol. 73, 4326-4331. crossref(new window)

43.
Scheller, S., Goenrich, M., Thauer, R.K., and Jaun, B. 2013. Methylcoenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. J. Am. Chem. Soc. 135, 14975-14984. crossref(new window)

44.
Singh, A. and Dubey, S.K. 2012. Temporal variation in methanogenic community structure and methane production potential of tropical rice ecosystem. Soil Biol. Biochem. 48, 162-166. crossref(new window)

45.
Singh, A., Singh, R.S., Upadhyay, S.N., Joshi, C.G., Tripathi, A.K., and Dubey, S.K. 2012. Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil. FEMS Microbiol. Ecol. 82, 118-134. crossref(new window)

46.
Singla, A., Sakata, R., Hanazawa, S., and Inubushi, K. 2014. Methane production/oxidation potential and methanogenic archaeal diversity in two paddy soils of Japan. Int. J. Ecol. Environ. Sci. 40, 49-55.

47.
Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., et al. 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602-606. crossref(new window)

48.
Tallant, T.C. and Krzycki, J.A. 1997. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J. Bacteriol. 179, 6902-6911. crossref(new window)

49.
Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S., and Klotz, M.G. 2011. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ. Microbiol. Rep. 3, 91-100. crossref(new window)

50.
Thauer, R.K. 1998. Biochemistry of methanogenesis, a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MIcrobiology 144, 2377-2406. crossref(new window)

51.
Yang, C.C., Packman, L.C., and Scrutton, N.S. 1995. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase: Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur. J. Biochem. 232, 264-271. crossref(new window)

52.
Yuan, Q., Pump, J., and Conrad, R. 2013. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences Discussions 10, 14169-14193. crossref(new window)

53.
Zheng, Y., Huang, R., Wang, B.Z., Bodelier, P.L.E., and Jia, Z.J. 2014. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11, 3353-3368. crossref(new window)