Advanced SearchSearch Tips
Isolation and characterization of anaerobic microbes from marine environments in Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation and characterization of anaerobic microbes from marine environments in Korea
Kim, Wonduck; Lee, Jung-Hyun; Kwon, Kae Kyoung;
  PDF(new window)
Marine bacteria have represented unique physiologies and products which are not discovered from terrestrial organisms. There has been great interest to utilize and develop marine bacteria in many industrial sectors. Recently, we isolated and characterized anaerobic bacteria from various marine environments in Korea to search organic acids fermenting strains. From our enrichment performed under anaerobic condition, 65 strains were isolated and identified by the 16S rRNA gene sequence analysis. Among them, eleven strains were selected for phylogenetical and biochemical analysis. All tested strains were affiliated with Class Clostridia except one with Class Bacteroidia. Most of strains produce acetate (6 strains) with butyrate (2 strains) and/or formate (4 strains). Strain MCWD5 transformed 40% of glucose to extracellular polymeric substances. These results indicate that many novel anaerobic microorganisms which have great potential in commercial application are distributed in the marine environments of Korean Peninsula.
anaerobic marine bacteria;Clostridia;enrichment culture;organic acid production;
 Cited by
Andersen, R.J. and Williams, D.E. 2000. Pharmaceuticals from the sea, pp. 55-79. In Hester, R.E. and Harrison, R.M. (eds), Chemistry in the Marine Environment. The Royal Society of Chemistry, Cambridge, UK.

Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296.

Bowman, K.S., Moe, W.M., Rash, B.A., Bae, H.S., and Rainey, F.A. 2006. Bacterial diversity of an acidic Louisiana groundwater contaminated by dense nonaqueous-phase liquid containing chloroethanes and other solvents. FEMS Microbiol. Ecol. 58, 120-133. crossref(new window)

Cavaleiro, A.J., Abreu, A.A., Sousa, D.Z., Pereira, M.A., and Alves, A.A. 2013. The role of marine anaerobic Bacteria and Archaea in bioenergy production, pp. 445-469. In Abdul, M., Elisabeth, G., and Madalena, A. (eds.), Management of Microbial Resources in the Environment. Springer, New York, USA.

Cotta, M.A., Whitehead, T.R., Falsen, E., Moore, E., and Lawson, P.A. 2009. Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int. J. Syst. Evol. Microbiol. 59, 150-155. crossref(new window)

Cotta, M.A., Whitehead, T.R., and Zeltwanger, R.L. 2003. Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ. Microbiol. 5, 737-745. crossref(new window)

Distaso, A. 1912. Contribution a l'etude sur l'intoxication intestinale. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I. Orig. 62, 433-468.

Fang, M.X., Zhang, W.W., Zhang, Y.Z., Tan, H.Q., Zhang, X.Q., Wu, M., and Zhu, X.F. 2012. Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int. J. Syst. Evol. Microbiol. 62, 3018-3023. crossref(new window)

Faulkner, W. 2002. Marine microbial biodiversity and drug discovery. Abstr. Natural products from marine microorganisms. An international symposium held under the auspices of the European society for marine biotechnology. Greifswald, Germany.

Fenical, W. 1993. Chemical studies of marine bacteria: developing a new resource. Chem. Rev. 93, 1673-1683. crossref(new window)

Fontaine, F.E., Peterson, W.H., Mccoy, E., Johnson, M.J., and Ritter, G.J. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43, 701-715.

Gao, Z.M., Xu, X., and Ruan, L.W. 2014. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil. Appl. Microbiol. Biotechnol. 98, 465-474. crossref(new window)

Goldstein, E.J. 1995. Anaerobes under assault: from cottage industry to industrialization of medicine and microbiology. Clin. Infect. Dis. 20(Supplement 2), S112-116. crossref(new window)

Harris, J.K., Caporaso, J.G., Walker, J.J., Spear, J.R., Gold, N.J., Robertson, C.E., Hugenholtz, P., Goodrich, J., McDonald, D., Knights, D., et al. 2013. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50-60. crossref(new window)

Himelbloom, B.H. and Canale-Parola, E. 1989. Clostridium methylpentosum sp. nov.: a ring-shaped intestinal bacterium that ferments only methylpentoses and pentoses. Arch. Microbiol. 151, 287-293. crossref(new window)

Inoue, H., Takimura, O., Kawaguchi, K., Nitoda, T., Fuse, H., Murakami, K., and Yamaoka, Y. 2003. Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl. Environ. Microbiol. 69, 878-883. crossref(new window)

Isenbarger, T.A., Finney, M., Rios-Velazquez, C., Handelsman, J., and Ruvkun, G. 2008. Miniprimer PCR, a new lens for viewing the microbial world. Appl. Environ. Microbiol. 74, 840-849. crossref(new window)

Janssen, P.H. 2004. Propanol as an end product of threonine fermentation. Arch. Microbiol. 182, 482-486. crossref(new window)

Kane, M.D., Brauman, A., and Breznak, J.A. 1991. Clostridium mayombei sp. nov., an $H_2/CO_2$ acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156, 99-104. crossref(new window)

Kim, S., Jeong, H., and Chun, J. 2007. Clostridium aestuarii sp. nov., from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 57, 1315-1317. crossref(new window)

Kim, S., Jeong, H., Kim, S., and Chun, J. 2006. Clostridium ganghwense sp. nov., isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 56, 691-693. crossref(new window)

Kim, W., Lee, J.H., and Kwon, K.K. 2016. Abyssisolibacter fermentans gen. nov. sp. nov., isolated from deep sub-seafloor sediment. J. Microbiol. 54, 347-352. crossref(new window)

Kotsyurbenko, O.R., Simankova, M.V., Nozhevnikova, A.N., Zhilina, T.N., Bolotina, N.P., Lysenko, A.M., and Osipov, G.A. 1995. New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch. Microbiol. 163, 29-34. crossref(new window)

Li, S.L., Whang, L.M., Chao, Y.C., Wang, Y.H., Wang, Y.F., Hsiao, C.J., Tseng, I.C., Bai, M.D., and Cheng, S.S. 2010. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone. Int. J. Hydrogen Energy 35, 61-70. crossref(new window)

Manivasagan, P. and Kim, S.K. 2014. Extracellular polysaccharides produced by marine bacteria. Adv. Food Nutr. Res. 72, 79-94. crossref(new window)

McCoy, E., Fred, E.B., Peterson, W.H., and Hastings, E.G. 1926. A cultural study of the acetone butyl alcohol organisms. J. Infect. Dis. 39, 457-483. crossref(new window)

Meyer, J., Schmidt, A., Michalke, K., and Hensel, R. 2007. Volatilisation of metals and metalloids by the microbial population of an alluvial soil. Syst. Appl. Microbiol. 30, 229-238. crossref(new window)

Mohapatra, B.R., Bapuji, M., and Sree, A. 2003. Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnol. 23, 75-84. crossref(new window)

Pham, V.D., Hnatow, L.L., Zhang, S., Fallon, R.D., Jackson, S.C., Tomb, J.F., DeLong, E.F., and Keeler, S.J. 2009. Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ. Microbiol. 11, 176-187. crossref(new window)

Raghukumar, C., Vipparty, V., David, J.J., and Chandramohan, D. 2001. Degradation of crude oil by marine cyanobacteria. Appl. Microbiol. Biotechnol. 57, 433-436. crossref(new window)

Rezgui, R., Ben Ali Gam, Z., Ben Hamed, S., Fardeau, M.L., Cayol, J.L., Maaroufi, A., and Labat, M. 2011. Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 61, 99-104. crossref(new window)

Sardessai, Y.N. and Bhosle, S. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog. 20, 655-660. crossref(new window)

Soriano, S. and Soriano, A. 1948. Nueva bacteria anaerobia productora de una alteracion en sordinas envasadas. Rev. Asoc. Argent. Dietol. 6, 36-41.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. crossref(new window)

Tracy, B.P., Jones, S.W., Fast, A.G., Indurthi, D.C., and Papoutsakis, E.T. 2012. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 23, 364-381. crossref(new window)

Wang, B., Ji, S.Q., Tian, X.X., Qu, L.Y., and Li, F.L. 2015. Brassicibacter thermophilus sp. nov., a thermophilic bacterium isolated from coastal sediment. Int. J. Syst. Evol. Microbiol. 65, 2870-2874. crossref(new window)

Weusthuis, R.A., Lamot, I., van der Oost, J., and Sanders, J.P. 2011. Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol. 29, 153-158. crossref(new window)

Whitehead, R. 1999. Natural product chemistry. Annu. Rep. Prog. Chem. Sec. B. 95, 183-205. crossref(new window)

Wolfe, R.S. 1999. Anaerobic life-a centennial view. J. Bacteriol. 181, 3317-3320.

Yazdani, S.S. and Gonzalez, R. 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18, 213-219. crossref(new window)