Advanced SearchSearch Tips
Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5
Lee, Ye-Rim; Mitchell, Robert J.; Whang, Kyung-Sook;
  PDF(new window)
Forty-nine pigments were extracted from the collections of 106 pigment producing bacteria from the plant rhizosphere soil. Antibacterial activity test was performed in the subjects of the extracted pigments with plant pathogenic bacteria including Xanthomonas axonopodis and Xanthomonas campestris, and with plant pathogenic fungi including Botrytis cinerea, Colletotrichum acutatum, and Fusarium oxysporum. The yellow pigment by Chryseobacterium sp. RBR9 and the red pigment by of Methylobacterium sp. RI13 showed the antibacterial activities against Xanthomonas axonopodis and Xanthomonas campestris. The violet pigment by Collimonas sp. DEC-B5 showed the antibacterial activity as well as the antifungal activities against Botrytis cinerea and Fusarium oxysporum. Especially, the violet pigment inhibited the growth of Botrytis cinerea more than 65% at MIC . Upon the HPLC analysis result for the isolation of pigment with antifungal activity, violacein (91.6%) and deoxyviolacein (8.4%) were isolated for the pigment by Collimonas sp. DEC-B5. The production amount of the pigment was increased more than 10 times higher when D-mannitol 1.5% and yeast extract 0.2% were added as the nitrogen source to SCB medium. This study suggests that produced violacein by Collimonas sp. DEC-B5 will be effective to control strawberry gray-mold rot fungi by its preventive activity.
Botrytis cinerea;antifungal pigment;bacterial pigment;gray-mold rot fungi;violacein;
 Cited by
Atlas, R.M. and Bartha, R. 1998. Interactions between microorganisms and plants. Microb. Ecol. 4, 99-140.

Brucker, R.M., Harris, R.N., Schwantes, C.R., Gallaher, T.N., Flaherty, D.C., Lam, B.A., and Minbiole, K.P. 2008. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon inereus. J. Chem. Ecol. 34, 1422-1429. crossref(new window)

Chang, J.Y., Lee, H.H., Kim, I.C., and Chang, H.C. 2001. Characterization of a bacteriocin produced by Bacillus licheniformis cy2. J. Korean Soc. Food Sci. Nutr. 30, 227-233.

Choi, S.Y., Kim, S., Lyuck, S., Kim, S.B., and Mitchell, R.J. 2015. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci. Rep. 5, 15598. crossref(new window)

Green, P.N. and Bousfield, I.J. 1983. Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov., corrig.; Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin & Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33, 875-877. crossref(new window)

Griffiths, J.C. 2005. Coloring Foods & Beverages. Foodtechnology 59, 38-44.

Guo, R., Liu, X., Li, S., and Miao, Z. 2009. In vitro inhibition of fungal rootrot pathogens of Panax notoginseng by rhizobacteria. Plant Pathol. J. 25, 70-76. crossref(new window)

Hackl, E., Boltenstern, S., Bodrossy, L., and Sessitsch, A. 2004. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 7, 5057-5065.

Hakvag, S., Fjaervik, E., Klinkenberg, G., Borgos, S., Josefsen, K., Ellingsen, T., and Zotchev, S. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trondelag, Norway. Mar. Drugs 7, 576-588. crossref(new window)

Jang, C.S., Lim, J.H., Seo, M.W., Song, J.Y., and Kim, H.G. 2010. Direct detection of Cylindrocarpon destructans, root rot pathogen of ginseng by nested PCR from soil samples. Mycobiology 38, 33-38. crossref(new window)

Kang, D.W., Ryu, I.H., and Han, S.S. 2012. The isolation of Bacillus subtilis KYS-10 with antifungal activity against plant pathogens. Kor. J. Pestic. Sci. 16, 178-186. crossref(new window)

Kim, S.J., Fhi, J.W., Kang, S.G., and Jung, S.T. 1997. Characteristics and stability of pigments produced by Monascus anka in a jar fermenter. J. Korean Soc. Food Sci. Nutr. 26, 60-66.

Kim, H.S., Sang, M.K., Jung, H.W., Jeun, Y.C., Myung, I.S., and Kim, K.D. 2012. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Protect. 32, 129-137. crossref(new window)

Kobylewski, S. and Jacobson, M.F. 2012. Toxicology of food dyes. Int. J. Occup. Environ. Health 18, 220-246. crossref(new window)

Konovalova, H.M., Shylin, S.O., and Rokytko, P.V. 2007. Characteristics of carotinoids of methylotrophic bacteria of Methylobacterium genus. Mikrobiol. Z. 69, 35-41.

Malik, K., Tokkas, J., and Goyal, S. 2012. Microbial pigments: A review. Int. J. Microbial. Resour. Technol. 1, 361-365.

Matz, C., Deines, P., Boenigk, J., Arndt, H., Eberl, L., Kjellberg, S., and Jurgens, K. 2004. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl. Environ. Microbiol. 70, 1593-1599. crossref(new window)

Mendes, A.S., De Carvalho, J.E., Duarte, M.C.T., Duran, N., and Bruns, R.E. 2001. Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol. Lett. 23, 1963-1969. crossref(new window)

Nakamura, Y., Asada, C., and Sawada, T. 2003. Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol. Bioproc. Eng. 8, 37-40. crossref(new window)

Ordentlich, A., Elad, Y., and Chet, I. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78, 84-87.

Pantanella, F., Berlutti, F., Passariello, C., Sarli, S., Morea, C., and Schippa, S. 2007. Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102, 992-999.

Rettori, D. and Duran, N. 1998. Production, extraction and purification of violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 14, 685-688. crossref(new window)

Rollas, S., Kalyoncuoglu, N., Sur-Altiner, D., and Yegenoglu, Y. 1993. 5-(4-aminophenyl)-4-substituted-2, 4-dihydro-3H-1, 2, 4-triazole-3-thiones: synthesis and antibacterial and antifungal activities. Pharmazie 48, 308-309.

Ryu, B.H. and Kim, M.J. 2000. Production of red pigment from marine bacterium utilizing colloidal chitin. Kor. J. Microbiol. Biotechnol. 28, 264-269.

Sanchez, C., Brana, A.F., Mendez, C., and Salas, J.A. 2006. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chembiochem 7, 1231-1240. crossref(new window)

Selvameenal, L., Radhakrishnan, M., and Balagurunathan, R. 2009. Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Int. J. Pharm. Sci. 4, 499-504.

Shirata, A., Tsukamoto, T., Yashui, H., Kato, H., Hayasaka, S., and Kojima, A. 1997. Production of bluish-purple pigments by Janthinobacterium lividum isolated from the raw silk and dyeing with them. J. Sericult. Sci. Jpn. 66, 377-385.

Van Aken, B., Peres, C.M., Doty, S.L., Yoon, J.M., and Schnoor, J.L. 2004. Methylobacterium populi sp. nov., a novel aerobic, pinkpigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoids 6nigra DN34). Int. J. Syst. Evol. Microbiol. 54, 1191-1196. crossref(new window)

Venil, C.K., Zakaria, Z.A., and Ahmad, W.A. 2013. Bacterial pigments and their applications. Process Biochem. 48, 1065-1079. crossref(new window)

Wang, H., Wang, F., Zhu, X., Yan, Y., Yu, X., Jiang, P., and Xing, X.H. 2012. Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem. Eng. J. 67, 148-155. crossref(new window)

Wood, A.P., Kelly, D.P., McDonald, I.R., Jordan, S.L., Morgan, T.D., Khan, S., Murrell, J.C., and Borodina, E. 1998. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169, 148-158. crossref(new window)

Wu, Y.F., Wu, Q.L., and Liu, S.J. 2013. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int. J. Syst. Evol. Microbiol. 63, 913-919. crossref(new window)

Yada, S., Wang, Y., Zou, Y., Nagasaki, K., Hosokawa, K., Osaka, I., Arakawa, R., and Enomoto, K. 2008. Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar. Biotechnol. 10, 128. crossref(new window)