Advanced SearchSearch Tips
Construction of the recombinant yeast strain with transformation of rice starch-saccharification enzymes and its alcohol fermentation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Construction of the recombinant yeast strain with transformation of rice starch-saccharification enzymes and its alcohol fermentation
Lee, Ja-Yeon; Chin, Jong-Eon; Bai, Suk;
  PDF(new window)
To improve antioxidant glutathione (GSH) content and saccharification ability in sake yeasts of Saccharomyces cerevisiae, the -glutamylcysteine synthetase gene (GSH1) from S. cerevisiae, glucoamylase gene (GAM1) and -amylase gene (AMY) from Debaryomyces occidentalis were co-expressed in sake yeasts for manufacturing a refreshing alcoholic beverage abundant in GSH from rice starch. The extracellular GSH content of the recombinant sake yeasts increased 1.5-fold relative to the parental wide-type strain. The saccharification ability by glucoamylase of the new yeast strain expressing both GAM1 and AMY genes was 2-fold higher than that of the yeast strain expressing only GAM1 gene when grown in the culture medium containing 2% (w/v) rice starch. It generated 11% (v/v) ethanol from 20% (w/v) rice starch and consumed up to 90% of the starch content after 7 days of fermentation.
Saccharomyces cerevisiae;fermentation;glutathione;rice starch;saccharification;
 Cited by
Asano, T., Kurose, N., and Tarumi, S. 2001. Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants. J. Biosci. Bioeng. 92, 429-433. crossref(new window)

Baba, S., Oguri, I., Fukuzawa, M., Moriyama, K., Lida, T., Kobayashi, I., and Imai, K. 1974. Maltose assimilation by Saccharomyces sake. J. Brew. Soc. Jpn. 69, 453-455. crossref(new window)

Chen, J.L., Xie, L., Cai, J.J., Yang, C.S., and Duan, X.H. 2013. Enzymatic synthesis of glutathione using engineered Saccharomyces cerevisiae. Biotechnol. Lett. 35, 1259-1264. crossref(new window)

Dohmen, R.J., Strasser, A.W.M., Dahlems, U.M., and Hollenberg, C.P. 1990. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95, 111-121. crossref(new window)

Domingues, L., Onnela, M.L., Teixeira, J.A., Lima, N., and Penttila, M. 2000. Construction of a flocculent brewer's yeast strain secreting Aspergillus niger ${\beta}$-galactosidase. Appl. Microbiol. Biotechnol. 54, 97-103. crossref(new window)

Eksteen, J.M., van Renseburg, P., Cordero Otero, R.R., and Pretorius, I.S. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the ${\alpha}$-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84, 639-646. crossref(new window)

Fan, X., He, X., Guo, X., Qu, N., Wang, C., and Zhang, B. 2004. Increasing glutathione formation by functional expression of the ${\gamma}$-glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotechnol. Lett. 26, 415-417. crossref(new window)

Fujieda, T., Kitamura, Y., Yamasaki, H., Furuishi, A., and Motobayashi, K. 2012. An experimental study on whole paddy saccharification and fermentation for rice ethanol production. Biomass Bioeng. 44, 135-141. crossref(new window)

Ghang, D.M., Yu, L., Lim, M.H., Ko, H.M., Im, S.Y., Lee, H.B., and Bai, S. 2007. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and ${\alpha}$-amylase genes from Debaryomyces occidentalis. Biotechnol. Lett. 29, 1203-1208. crossref(new window)

Gietz, D., St. Jean, A., Woods, R., and Schiestl, R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425. crossref(new window)

Im, Y.K., Park, J.Y., Lee, J.Y., Choi, S.H., Chin, J.E., Ko, H.M., Kim, I.C., and Bai, S. 2013. Construction of amylolytic industrial strains of Saccharomyces cerevisiae for improved ethanol production from raw starch. Korean J. Microbiol. 40, 200-204.

Kang, N.Y., Park, J.N., Chin, J.E., Lee, H.B., Im, S.Y., and Bai, S. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis ${\alpha}$-amylase gene. Biotechnol. Lett. 25, 1847-1851. crossref(new window)

Kim, H.R., Im, Y.K., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2011. Raw starch fermentation to ethanol by an industrial distiller's strain of Saccharomyces cerevisiae expressing glucoamylase and ${\alpha}$-amylase genes. Biotechnol. Lett. 33, 1643-1648. crossref(new window)

Kim, J.H., Kim, H.R., Lim, M.H., Ko, H.M., Chin, J.E., Lee, H.B., Kim, I.C., and Bai, S. 2010. Construction of a direct starchfermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, ${\alpha}$-amylase and debranching enzyme. Biotechnol. Lett. 32, 713-719. crossref(new window)

Kim, K., Park, C.S., Mattoon, J.R. 1988. High-efficiency, one-step utilization by transformed Saccharomyces cerevisiae cells which secrete both yeast glucoamylase and mouse ${\alpha}$-amylase. Appl. Environ. Microbiol. 54, 966-971.

Lee, F.W. and Da Silva, N.A. 1997. Improved efficiency and stability of multiple cloned gene insertions at the ${\delta}$ sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 339-345. crossref(new window)

Lee, J.Y., Im, Y.K., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2015. Direct utilization of purple sweet potato by sake yeasts to produce an anthocyanin-rich alcoholic beverage. Biotechnol. Lett. 37, 1439-1445. crossref(new window)

Lin, L.L., Ma, Y.J., Chien, H.R., and Hsu, W.H. 1998. Construction of an amylolytic yeast by multiple integration of the Aspergillus awamori glucoamylase gene into a Saccharomyces cerevisiae chromosome. Enzyme Microb. Technol. 23, 360-365. crossref(new window)

Ma, Y., Lin, L.L., Chien, H.R., and Hsu, W.H. 2000. Effcient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31, 55-59. crossref(new window)

Nieto, A., Prieto, J.A., and Sanz, P. 1999. Stable high-copy number integration of Aspergillus orizae ${\alpha}$-amylase cDNA in an industrial baker's yeast strain. Biotechnol. Prog. 15, 459-466. crossref(new window)

Park, J.Y., Lee, J.Y., Choi, S.H., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2014. Construction of dextrin and isomaltose-assimilating brewer's yeasts for production of low-carbohydrate beer. Biotechnol. Lett. 36, 1693-1699. crossref(new window)

Saito, S., Mieno, Y., Nagashima, T., Kumagai, C., and Kitamoto, K. 1996. Breeding of a new type of baker's yeast by ${\delta}$-integration for overproduction of glucoamylase using a homothallic yeast. J. Ferment. Bioeng. 81, 98-103. crossref(new window)

Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., and Kondo, A. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and ${\alpha}$-amylase. Appl. Environ. Microbiol. 70, 5037-5040. crossref(new window)

Suresh, K., Kiran sree, N., and Rao, V. 1999. Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour. Technol. 68, 301-304. crossref(new window)

Wang, Q.J., Sun, D., Jeong, S., Yeo, S., Choi, J., and Choi, H. 2014. Screening of rice cultivars for brewing high quality turbid rice wine. LWT-Food Sci. Technol. 56, 145-152. crossref(new window)

Wang, J.J., Wang, Z.Y., He, X.P., and Zhang, B.R. 2010a. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor. J. Microbiol. Biotechnol. 20, 1539-1545. crossref(new window)

Wang, J.J., Wang, Z.Y., Liu, X.F., Guo, X.N., He, X.P., Wensel, P.C., and Zhang, B.R. 2010b. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. 20, 767-774.

Wei, G., Li, Y., Du, G., and Chen, J. 2003. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Proc. Biochem. 38, 1133-1138. crossref(new window)