JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Onion Wholesale Price Forecasting Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Onion Wholesale Price Forecasting Model
Nam, Kuk-Hyun; Choe, Young-Chan;
  PDF(new window)
 Abstract
This paper predicts the onion`s cultivation areas, yields per unit area, and wholesale prices during ship dates by using wholesale price data from the Korea Agro-Fisheries & Food Trade Corporation, the production data from the Statistics Korea, and the weather data from the Korea Meteorological Administration with an ARDL model. By analyzing the data of wholesale price, rural household income and rural total earnings, onion cultivation areas in 2015 are estimated to be 21,035, 17,774 and 20,557(ha). In addition, onion yields per unit area of South Jeolla Province, North Gyeongsang Province, South Gyeongsang Province, Jeju Island, and the whole country in 2015 are estimated to be 5,980, 6,493, 6,543, 6,614, 6,139 (kg/10a) respectively. By using onion production`s predictive value found from onion`s cultivation areas and yields per unit area in 2015, the onion`s wholesale prices in June are estimated to be 780 won, 1,100 won, and 820 won for each model. Predicted monthly price after the onion`s ship dates is analyzed to exceed 1,000 won after August.
 Keywords
cultivation areas;yields;price;forecasting;onion;
 Language
Korean
 Cited by
1.
공간 패널 회귀모형을 이용한 양파 생산량 추정,최성천;백장선;

응용통계연구, 2016. vol.29. 5, pp.873-885 crossref(new window)
2.
인공신경망의 은닉층 최적화를 통한 농산물 가격예측 모델,배경태;김창재;

한국정보기술학회논문지, 2016. vol.14. 12, pp.161-169 crossref(new window)
1.
Onion yield estimation using spatial panel regression model, Korean Journal of Applied Statistics, 2016, 29, 5, 873  crossref(new windwow)
 References
1.
강태훈. (2007). 도매시장 경락가격과 반입량의 상호 관계 분석: 배추, 감자, 양파를 중심으로. 농업경제연구 , 48(4), 45-67.

2.
국승용, & 김완배. (2007). 강서 농산물 도매시장의 거래제도별 가격효율성의 실증분석. 농업경제연구, 48(2), 51-73.

3.
김병률. (2011). 채소 수급 및 유통현황과 개선방향. 한국식품유통학회 2011 하계학술대회 논문집.

4.
김배성. (2005). 채소가격 예측을 위한 응용기법별 예측력 비교. 농업경제연구, 46(4), 89-113.

5.
김배성, & 조재환. (2010). 중기선행관측을 위한 농축산물 작형별 수급모형 및 예측평가시스템 개발 연구. 농촌경제연구원.

6.
김윤진. (2013). 이상기후 현상이 단수 및 변동성에 미치는 영향 : 양파 사례 연구. 서울대학교 석사학위논문.

7.
박기환, 박영구, & 김재한. (2007). 주요 채소류의 월별 수입수요함수 추정. 한국농촌경제연구원.

8.
박지연, & 박영구. (2013). 배추.무 예측모형 고도화 방안. 한국농촌경제연구원.

9.
안병일, 김성용, & 김병률. (2002). 양념채소가격의 변동추세와 요인분석. 농업경제연구 , 43(1), 103-121.

10.
오유진, & 김유섭. (2007). 하이브리드 주가예측 모델. 한국정보처리학회, 14(7), 531-540.

11.
윤병삼, & 양승룡. (2004). 양념채소 가격의 요일효과, 월별효과 및 월중효과에 관한 연구. 농업경제연구, 45(2), 187-210.

12.
이민수, & 최영찬. (2009). 머신러닝을 활용한 모돈의 생산성 예측모델. 농촌지도와 개발, 16(4), 939-965.

13.
이중웅. (1996). 고추⋅마늘⋅양파의 생산결정요인 분석. 농촌경제, 19(3), 27-50.

14.
이용선, 김종진 & 노수정. (2012). 주요 채소 가격의 변동 패턴 및 요인 분석. 한국농촌경제연구원.

15.
한석호, & 김병률. (2011). 시장개방하의 배추 수급모형과 전망. 농촌경제, 27(3), 35-53.

16.
한국농수산물유통공사. http://www.kamis.co.kr

17.
통계청. http://www.kostat.go.kr

18.
기상청. http://www.kma.go.kr

19.
Alioune, D. (2008). Alternative forecasting techniques for vegetable prices in Senegal. Revue Senegalaise des Recherches Agricoles et Agroalimentaires, 1(3), 5-10.

20.
Ji, B., & Wan, J. (2007). Artificial neural networks for rice yield prediction in mountainous regions. Computers and Electronics in Agriculture, 145(3), 249-261.

21.
Burhan, O., & Handan, A. (2002). Impacts of climate factors on yields for selected crops in the Southern Turkey. Mitigation and Adaptation Strategies for Global Change, 7, 367-380. crossref(new window)

22.
Chmielewski, M., & Kohn, W. (2000). Impact of weather on yield components of winter rye over 30 years. Agricultural and Forest Meterorology, 10(2), 253-261.

23.
Karpoff, J. M. (1987). The relation between price changes and trading volume: A survey. The Journal of Financial and Quantitative Analysis, 22(1), 109-126. crossref(new window)

24.
Jon, B., & David, B. (1983). Price forecasting and evaluation: An application in agriculture. Journal of Forecasting, 2(3), 237-248. crossref(new window)

25.
Manish, S., & Sanjay, J. (2011). Applicability of ARIMA models in wholesale vegetable market: An investigation. International Conference on Industrial Engineering and Operations Management, 17(2), 1125-1130.

26.
Mishra, C., & Sarkar, V. (2013). Instability and forecasting using ARIMA model in area, production and productivity of onion in India. Journal of Crop and Weed, 9(2), 96-101.

27.
Murat, I., & Stephen, D. (2006). An analysis of the impact of climate change on crop yields and yield variability. Applied Ecomomics, 3(8), 835-844.

28.
Alvarez, R. (2009). Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy, 30(2), 70-77. crossref(new window)