Advanced SearchSearch Tips
Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique
Choi, Won; Kim, Hanjoong;
  PDF(new window)
Most of chloride diffusion models based on finite difference method (FDM) could not express the diffusion in horizontal direction at each elevation. To overcome these weakness, two dimensional chloride ion penetration model based on finite element method (FEM) to be able to combine various multi-physics simultaneously was suggested by introducing moving mesh technique. To avoid the generation of mesh being able to be distorted depending on the relative movement of water level to static concrete, a rectangular type of mesh was intentionally adopted and the total number of meshes was empirically selected. The simulated results showed that the contents of surface chloride decreased following to the increase of elevation in the top part of low sea level, whereas there were no changes in the bottom part of low level. In the DuraCrete model, the diffusion coefficient of splashed zone is generally smaller than submerged zone, whereas the trend of Life365 model is reverse. Therefore, it could be understood that the developed model using moving mesh technique effectively reflects model rather than model. In the future, the model will be easily expanded to be combined with various multi-physics models considering water evaporation, heat of hydration, irradiation effect of sun and so on because it is based on FEM.
DuraCrete;chloride;finite element method;moving mesh technique;
 Cited by
Ann, K. Y., J. H. Ahn, and J. S., Ryou, 2009. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials 23(1): 239-245. crossref(new window)

Arora, P., B. N. Popov, B. Haran, M. Ramasubramanian, S. Popova, and R. E. White, 1997. Corrosion initiation time of steel reinforcement in a chloride environment - a one dimensional solution. Corrosion Science 39(4): 739-759. crossref(new window)

Bentz, E. C., and M. D. A. Thomas, 2001. Manual of Life-365, Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides.

Choi, W., and H. J. Kim, 2015. Development of three dimensional chloride ion penetration model based on finite element method. Korean Society of Agricultural Engineers 57(5): 43-49 (in Korean). crossref(new window)

Edvardsen, C. K., Y. J. Kim, S. J. Park, S. K. Jeong, and H. C. Im, 2006. Busan-Geoje fixed link concrete durability design for the bridges and tunnels. Tunnelling and Underground Space Technology 21(3-4): 432. crossref(new window)

Gu, I. S., 2008. The study on the mix design of high durable marine concrete for GK project. Master's Thesis, University of Ulsan, South Korea (in Korean).

Song H.W., S.W. Park, and K.Y. Ann, 2007. Time dependent chloride transport evaluation of concrete structures exposed to marine environment. journal of the Korea Concrete Institute 19(5): 585-593 (in Korean). crossref(new window)

Japan Society of Civil Engineers (JSCE). Standard specification for durability of concrete. Concr Libr 2002: 108 (in Japanese).

Ji, Y., Z. Tan, and Y. Yuan, 2009. Chloride Ion Ingress in Concrete Exposed to a Cyclic Wetting and Drying Environment. Transactions of the ASABE 52(1): 239-245. crossref(new window)

Kassir, M. K., and M. Ghosn, 2002. Chloride-induced corrosion of reinforced concrete bridge decks. Cement and Concrete Research 32(1): 139-143. crossref(new window)

Kim, K. H., S. W. Cha, and S. Y. Jang, 2009. Target Diffusion Coefficient of Marine Concrete Using DuraCrete Method. Korean Society of Civil Engineers 2009(10): 1335-1338 (in Korean).

Leandro, J., A. S. Chen, S. Djordjevic, and D. A. Savic, 2009. Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of hydraulic engineering 135(6): 495-504. crossref(new window)

Liska, R., and B. Wendroff, 2003. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM Journal on Scientific Computing 25(3): 995-1017. crossref(new window)

Marchand, J., and E. Samson, 2009. Predicting the service-life of concrete structures - Limitations of simplified models. Cement and Concrete Composites 31(8): 515-521. crossref(new window)

Meira, G. R., C. Andrade, C. Alonso, J. C. Borba Jr., and M. Padilha Jr., 2010. Durability of concrete structures in marine atmosphere zones - the use of chloride deposition rate on the wet candle as an environmental indicator. Cement and Concrete Composites 32: 427-435. crossref(new window)

Ministry of Construction and Transportation (MOCT). Standard specification for concrete structures on durability. Kimundang, Seoul, Korea, 2004 (in Korean).

Pack, S.-W., M.-S. Jung, H.-W. Song, S.-H. Kim, and K. Y. Ann, 2010. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cement and Concrete Research 40(2): 302-312. crossref(new window)

Song, H.-W., C.-H., Lee, and K. Y., Ann, 2008. Factors influencing chloride transport in concrete structures exposed to marine environments. Cement and Concrete Composites 30(2): 113-121. crossref(new window)

Song, H.-W., H.-B. Shim, A. Petcherdchoo, and S.-K. Park, 2009. Service life prediction of repaired concrete structures under chloride environment using finite difference method. Cement and Concrete Composites 31(2): 120-127. crossref(new window)

Takewaka, K., and S. Matsumoto, 1988. Quality and cover thickness of concrete based on the estimation of chloride penetration in marine environments. Concrete in Marine Environment, V. M. Malhotra, ed., SP-I09, Am. Concrete Inst. (ACI), Detroit, Mich., 381-400.

Tang, L., and L.-O. Nilsson, 1992. Rapid determination of the chloride diffusivity in concrete by applying an electrical field. ACI Mater. J. 89: 49-53.

Val, D. V., and M. G. Stewart, 2003. Life-cycle cost analysis of reinforced concrete structures in marine environments. Structural Safety 25(4): 343-362. crossref(new window)

Weyers, R. E., 1993. Service Life Estimates (SHRP-S-668). Strategic Highway Research Program. National Research Council. Washington DC.

Zhang, J. Z., I. M. McLoughlin, and N. R. Buenfeld, 1998. Modelling of chloride diffusion into surface-treated concrete. Cement and Concrete Composites 20(4): 253-261. crossref(new window)